To examine the role of alterations in myofibrillar function in human dilated cardiomyopathies, we determined isometric tension-calcium relations in permeabilized myocytesized myofibrillar preparations ( n ϭ 16) obtained from left ventricular biopsies from nine patients with dilated cardiomyopathy (DCM) during cardiac transplantation or left ventricular assist device implantation. Similar preparations ( n ϭ 10) were obtained from six normal hearts used for cardiac transplantation. Passive and maximal Ca 2 ϩ -activated tensions were similar for the two groups. However, the calcium sensitivity of isometric tension was increased in DCM
Anaplerosis, the synthesis of citric acid cycle intermediates, by pancreatic beta cell mitochondria has been proposed to be as important for insulin secretion as mitochondrial energy production. However, studies designed to lower the rate of anaplerosis in the beta cell have been inconclusive. To test the hypothesis that anaplerosis is important for insulin secretion, we lowered the activity of pyruvate carboxylase (PC), the major enzyme of anaplerosis in the beta cell. Stable transfection of short hairpin RNA was used to generate a number of INS-1 832/13-derived cell lines with various levels of PC enzyme activity that retained normal levels of control enzymes, insulin content, and glucose oxidation. Glucose-induced insulin release was decreased in proportion to the decrease in PC activity. Insulin release in response to pyruvate alone, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) plus glutamine, or methyl succinate plus -hydroxybutyrate was also decreased in the PC knockdown cells. Consistent with a block at PC, the most PC-deficient cells showed a metabolic crossover point at PC with increased basal and/or glucose-stimulated pyruvate plus lactate and decreased malate and citrate. In addition, in BCH plus glutamine-stimulated PC knockdown cells, pyruvate plus lactate was increased, whereas citrate was severely decreased, and malate and aspartate were slightly decreased. The incorporation of 14 C into lipid from [U-14 C]glucose was decreased in the PC knockdown cells. The results confirm the central importance of PC and anaplerosis to generate metabolites from glucose that support insulin secretion and even suggest PC is important for insulin secretion stimulated by noncarbohydrate insulin secretagogues.Glucose is the most potent physiological insulin secretagogue in the pancreatic beta cell, and it stimulates insulin secretion via its metabolism by aerobic glycolysis. Pyruvate, the terminal product of glycolysis, is metabolized in mitochondria to make ATP to power intracellular processes. However, somewhat surprisingly, in the beta cell, a large amount of glucosederived pyruvate, equal to one-half the total pyruvate entering mitochondrial metabolism, is carboxylated in the pyruvate carboxylase reaction to form oxaloacetate (1-5). The oxaloacetate can combine with pyruvate-derived acetyl-CoA to form citrate enabling the beta cell mitochondrion to increase the rate of synthesis of any citric acid cycle intermediate (anaplerosis) (6 -9). The rate of pyruvate carboxylation correlates with the glucose concentration applied to islets and is thus correlated with the rate of insulin secretion (2). The level of pyruvate carboxylase in the pancreatic islet beta cell is higher than in most body tissues (4, 10 -13) and is equal to the levels in gluconeogenic tissues, such as liver and kidney (4), which possess very high levels of the enzyme. However, the beta cell does not possess the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (11, 14, 15) or fructose-1,6-bisphosphatase (8), and this explains why it ...
Pancreatic beta cell mitochondria convert insulin secretagogues into products that support insulin exocytosis. We explored the idea that lipids are some of these products formed from acyl group transfer out of mitochondria to the cytosol, the site of lipid synthesis. There are two isoforms of acetyl-CoA carboxylase, the enzyme that forms malonyl-CoA from which C 2 units for lipid synthesis are formed. We found that ACC1, the isoform seen in lipogenic tissues, is the only isoform present in human and rat pancreatic islets and INS-1 832/13 cells. Inhibitors of ACC and fatty acid synthase inhibited insulin release in islets and INS-1 cells. Carbon from glucose and pyruvate were rapidly incorporated into many lipid classes in INS-1 cells. Glucose and other insulin secretagogues acutely increased many lipids with C 14 -C 24 chains including individual cholesterol esters, phospholipids and fatty acids. Many phosphatidylcholines and phosphatidylserines were increased and many phosphatidylinositols and several phosphatidylethanolamines were decreased. The results suggest that lipid remodeling and rapid lipogenesis from secretagogue carbon support insulin secretion.
Background: Phospholipids in insulin granules were characterized. Results: Phosphatidylserine and phospholipids with unsaturated or short fatty acids were concentrated in granules and increased with glucose stimulation. Conclusion: Phosphatidylserine enhances the interaction between proteins in granules and plasma membranes. Unsaturated and short FA increase the fluidity and curvature of lipid bilayers. Significance: Fusion of granules to PM and insulin exocytosis is enhanced.
Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80 -90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60 -75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20 -30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. -Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.Understanding the enzymatic makeup of human pancreatic islets is fundamental to developing strategies for designing artificial beta cells and beta cells differentiated from stem cells as treatments for type 1 diabetes, as well as modulating beta cell metabolism for the treatment of type 2 diabetes. Until recently, most of the information about normal insulin secretion came from studies of rodent islets or clonal cell lines. Although a recent study showed human pancreatic islets respond to insulin secretagogues similarly to rodent islets (1), what is still unknown is whether the use of intracellular pathways of secretagogue metabolism is the same in human islets as in rodent islets and cell lines. During the last few years, human islet preparations from human donors have become more readily available to researchers. By studying the levels of enzymes, the functional units of metabolism, the recent abundant supply of human islets has enabled our laboratory to discover clues suggesting differences in metabolic pathways between pancreatic islets of humans and rodents that have implications for better understanding normal human beta cell physiology.Anaplerosis, the biosynthesis of citric acid cycle intermediates (2), is widely believed to be important for insulin secretion (3). Pyruvate carboxylase (PC) 2 is the key anaplerotic enzyme in this process ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.