A Phase I clinical safety evaluation of the Excorp Medical, Inc, Bioartificial Liver Support System (BLSS) is in progress. Inclusion criteria are patients with acute liver failure of any etiology, presenting with encephalopathy deteriorating beyond Parson's Grade 2. The BLSS consists of a blood pump, heat exchanger to control blood temperature, oxygenator to control oxygenation and pH, bioreactor, and associated pressure and flow alarm systems. Patient liver support is provided by 70-100 g of porcine liver cells housed in the hollow fiber bioreactor. A single support period evaluation consists of 12 hour extracorporeal perfusion with the BLSS sandwiched between 12 hours of pre (baseline) and 12 hours of post support monitoring. Blood chemistries and hematologies are obtained every 6 hours during monitoring periods and every 4 hours during perfusion. Physiologic parameters are monitored continuously. The patient may receive a second treatment at the discretion of the clinical physician. Preliminary evaluation of safety considerations after enrollment of the first four patients (F, 41, acetaminophen induced, two support periods; M, 50, Wilson's disease, one support period; F, 53, acute alcoholic hepatitis, two support periods; F, 24, chemotherapy induced, one support period) is presented. All patients tolerated the extracorporeal perfusion well. All patients presented with hypoglycemia at the start of perfusion, treatable by IV dextrose. Transient hypotension at the start of perfusion responded to an IV fluid bolus. Only the second patient required heparin anticoagulation. No serious or unexpected adverse events were noted. Moderate biochemical response to support was noted in all patients. Completion of the Phase I safety evaluation is required to fully characterize the safety of the BLSS.
The first clinical use of the Excorp Medical Bioartificial Liver Support System (BLSS) in support of a 41-year-old African-American female with fulminant hepatic failure is described. The BLSS is currently in a Phase I/II safety evaluation at the University of Pittsburgh/UPMC System. Inclusion criteria for the study are patients with acute liver failure, any etiology, presenting with encephalopathy deteriorating beyond Parson's Grade 2. The BLSS consists of a blood pump; a heat exchanger to control blood temperature; an oxygenator to control oxygenation and pH; a bioreactor; and associated pressure and flow alarm systems. Patient liver support is provided by 70-100 g of porcine liver cells housed in the hollow fiber bioreactor. The patient exhibited transient hypotension and thrombocytopenia at initiation of perfusion. The only unanticipated safety event was a lowering of patient glucose level at the onset of perfusion with the BLSS that was treatable with intravenous glucose administration. Moderate changes in blood biochemistries pre-and post perfusion are indicative of liver support being provided by the BLSS. While the initial experience with the BLSS is encouraging, completion of the Phase I/II study is required in order to more fully understand the safety aspects of the BLSS.
Preclinical safety and efficacy evaluation of a novel bioartificial liver support system (BLSS) was conducted using a D-galactosamine canine liver failure model. The BLSS houses a suspension of porcine hepatocytes in a hollow fiber cartridge with the hepatocytes on one side of the membrane and whole blood flowing on the other. Porcine hepatocytes harvested by a collagenase digestion technique were infused into the hollow fiber cartridge and incubated for 16 to 24 hours prior to use. Fifteen purpose-bred male hounds, 1-3 years old, 25-30 kg, were administered a lethal dose, 1.5 g/kg, of D-galactosamine. The animals were divided into three treatment groups: (1b) no BLSS treatment (n = 6); (2b) BLSS treatment starting at 24-26 h post D-galactosamine (n = 5); and (2c) BLSS treatment starting at 16-18 h post D-galactosamine (n = 4). While maintained under isoflurane anesthesia, canine supportive care was guided by electrolyte and invasive physiologic monitoring consisting of arterial pressure, central venous pressure, extradural intracranial pressure (ICP), pulmonary artery pressure, urinary catheter, and end-tidal CO2. All animals were treated until death or death-equivalent (inability to sustain systolic blood pressure > 80 mmHg for 20 minutes despite massive fluid resuscitation and/or dopamine administration), or euthanized at 60 hours. All animals developed evidence of liver failure at 12-24 hours as evidenced by blood pressure lability, elevated ICP, marked hepatocellular enzyme elevation with microscopic massive hepatocyte necrosis and cerebral edema, elevated prothrombin time, and metabolic acidosis. Groups 2b and 2c marginally prolong survival compared with Group 1b (pairwise log rank censored survival time analysis, p = 0.096 and p = 0.064, respectively). Since survival times for Groups 2b and 2c are not significantly different (p = 0.694), the groups were combined for further statistical analysis. Survival times for the combined active treatment Groups 2b and 2c are significantly prolonged versus Group 1b (p = 0.047). These results suggest the novel BLSS reported here can have a significant impact on the course of liver failure in the D-galactosamine canine liver failure model. The BLSS is ready for Phase I safety evaluation in a clinical setting.
The inducible nitric oxide synthase (iNOS) is stimulated to produce large quantities of nitric oxide (NO) by proinflammatory stimuli, hemorrhagic shock, and a variety of cytokines. We have previously shown that cAMP profoundly inhibits hepatocyte iNOS expression in vitro. In this study, we tested whether glucagon, a hormone that increases cAMP in hepatocytes, could regulate hepatic iNOS expression and activity in vivo. Rats were injected intraperitoneally with lipopolysaccharide (LPS, 10 mg/kg) and treated with either saline or glucagon (500 microg/kg i.p.). Plasma and liver tissue were obtained 6 and 24 h after LPS. LPS induced increased iNOS mRNA, iNOS protein, and plasma levels of nitrite/nitrate that were all significantly decreased by glucagon treatment. The reduction in iNOS expression produced by glucagon was associated with a reduction in plasma AST and LDH levels, suggesting decreased LPS-induced hepatic injury. These data suggest that glucagon may participate in the in vivo regulation of hepatic iNOS expression after proinflammatory stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.