The cyclic AMP response element (CRE) has been implicated in the regulation of the expression of many genes and cellular processes important in hepatocyte function. CRE sites exist in the promoter regions of several genes expressed during inflammation. Numerous studies on the role of CRE in hepatocyte gene expression have been performed in resting hepatocytes, but the role of CRE during inflammation is unknown. To evaluate the regulation of CRE-mediated transcription during sepsis, cultured hepatocytes were exposed to proinflammatory cytokines and lipopolysaccharide (LPS) was injected into rats. Nuclear proteins were collected and CRE binding activity measured by electromobility shift assay (EMSA) using a consensus CRE oligonucleotide. CRE binding activity was increased in vitro by cytokines and in vivo by LPS administration but CRE-dependent reporter activity was decreased by cytokine stimulation. A c-jun N-terminal kinase (JNK) inhibitor reversed the cytokine-induced increase in CRE binding and increased CRE-dependent reporter activity. Supershift assays indicated that cyclic AMP response element binding protein (CREB) and c-Jun proteins were included in the CRE binding complex. CREB induced and c-Jun suppressed reporter activity using a CRE-dependent construct transfected into cultured primary hepatocytes. In conclusion, these data demonstrate that proinflammatory cytokines regulate CRE binding and activity in cultured hepatocytes and suggest that sepsis-induced changes in CRE binding may participate in the cellular response to inflammation.
Our study reports that staurosporine induces apoptosis in cultured rat hepatocytes in a dose- and time-dependent fashion. Staurosporine induced apparent cleavage of caspase-8, caspase-9, and caspase-3. The release of cytochrome c from mitochondria, and Bid activation were also detected in staurosporine-treated primary hepatocytes. These results suggest that mitochondria-mediated cell death signaling may be involved in staurosporine-induced hepatocyte apoptosis. Bcl-x(L) overexpression protected from "loss of" mitochondrial transmembrane potential and prevented staurosporine-induced caspase-3 and caspase-8 cleavage. Overexpression of constitutively active ERK and PKB inhibited staurosporine-induced caspase-3 activation and hepatocyte death. PI3K inhibitor (LY294002) and ERK inhibitor (PD98059) significantly reversed the protective effects of Bcl-x(L) on staurosporine-induced hepatocyte death. Our data suggest that Bcl-x(L) prevents staurosporine-induced hepatocyte apoptosis by modulating protein kinase B and p44/42 mitogen-activated protein kinase activity and disrupts mitochondria death signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.