The reciprocal expression of GATA-1 and GATA-2 during hematopoiesis is an important determinant of red blood cell development. Whereas Gata2 is preferentially transcribed early in hematopoiesis, elevated GATA-1 levels result in GATA-1 occupancy at sites upstream of the Gata2 locus and transcriptional repression. GATA-2 occupies these sites in the transcriptionally active locus, suggesting that a "GATA switch" abrogates GATA-2-mediated positive autoregulation. Chromatin immunoprecipitation (ChIP) coupled with genomic microarray analysis and quantitative ChIP analysis with GATA-1-null cells expressing an estrogen receptor ligand binding domain fusion to GATA-1 revealed additional GATA switches 77 kb upstream of Gata2 and within intron 4 at ؉9.5 kb. Despite indistinguishable GATA-1 occupancy at ؊77 kb and ؉9.5 kb versus other GATA switch sites, GATA-1 functioned uniquely at the different regions. GATA-1 induced histone deacetylation at and near Gata2 but not at the ؊77 kb region. The ؊77 kb region, which was DNase I hypersensitive in both active and inactive states, conferred equivalent enhancer activities in GATA-1-and GATA-2-expressing cells. By contrast, the ؉9.5 kb region exhibited considerably stronger enhancer activity in GATA-2-than in GATA-1-expressing cells, and other GATA switch sites were active only in GATA-1-or GATA-2-expressing cells. Chromosome conformation capture analysis demonstrated higher-order interactions between the ؊77 kb region and Gata2 in the active and repressed states. These results indicate that dispersed GATA factor complexes function via long-range chromatin interactions and qualitatively distinct activities to regulate Gata2 transcription.
The vitamin D receptor (VDR) mediates the endocrine actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and autoregulates the expression of its own gene in target cells. In studies herein, we used chromatin immunoprecipitation-chip analyses to examine further the activities of 1,25(OH)(2)D(3) and to assess the consequences of VDR/retinoid X receptor heterodimer binding at the VDR gene locus. We also explored mechanisms underlying the ability of retinoic acid, dexamethasone, and the protein kinase A activator forskolin to induce VDR up-regulation as well. We confirmed two previously identified intronic 1,25(OH)(2)D(3)-inducible enhancers and discovered two additional regions, one located 6 kb upstream of the VDR transcription start site. Although RNA polymerase II was present at the transcription start site in the absence of 1,25(OH)(2)D(3), it was strikingly up-regulated at both this site and at individual enhancers in its presence. 1,25(OH)(2)D(3) also increased basal levels of H4 acetylation at these enhancers as well. Surprisingly, many of these enhancers were targets for CCAAT enhancer-binding protein-beta and runt-related transcription factor 2; a subset also bound cAMP response element binding protein, retinoic acid receptor, and glucocorticoid receptor. Unexpectedly, many of these factors were resident at the Vdr gene locus in the absence of inducer, suggesting that they might contribute to basal Vdr gene expression. Indeed, small interfering RNA down-regulation of CCAAT enhancer-binding protein-beta suppressed basal VDR expression. These regulatory activities of 1,25(OH)(2)D(3), forskolin, and dexamethasone were recapitulated in MC3T3-E1 cells stably transfected with a full-length VDR bacterial artificial chromosome (BAC) clone-luciferase reporter gene. Finally, 1,25(OH)(2)D(3) also induced accumulation of VDR and up-regulated H4 acetylation at conserved regions in the human VDR gene. These data provide important new insights into VDR gene regulation in bone cells.
Given the simplicity of the DNA sequence that mediates binding of GATA transcription factors, GATA motifs reside throughout chromosomal DNA. However, chromatin immunoprecipitation analysis has revealed that GATA-1 discriminates exquisitely among these sites. GATA-2 selectively occupies the ؊2.8-kilobase (kb) region of the GATA-2 locus in the active state despite there being numerous GATA motifs throughout the locus. The GATA-1-mediated displacement of GATA-2 is tightly coupled to repression of GATA-2 transcription. We have used high resolution chromatin immunoprecipitation to show that GATA-1 and GATA-2 occupy two additional regions, ؊3.9 and ؊1.8 kb of the GATA-2 locus. GATA-1 and GATA-2 had distinct preferences for occupancy at these regions, with GATA-1 and GATA-2 occupancy highest at the ؊3.9-and ؊1.8-kb regions, respectively. Activation of an estrogen receptor fusion to GATA-1 (ER-GATA-1) induced similar kinetics of ER-GATA-1 occupancy and GATA-2 displacement at the sites. In the transcriptionally active state, DNase I hypersensitive sites (HSs) were detected at the ؊3.9-and ؊1.8-kb regions, with a weak HS at the ؊2.8-kb region. Whereas ER-GATA-1-instigated repression abolished the ؊1.8-kb HS, the ؊3.9-kb HS persisted in the repressed state. Transient transfection analysis provided evidence that the ؊3.9-kb region functions distinctly from the ؊2.8-and ؊1.8-kb regions. We propose that GATA-2 transcription is regulated via the collective actions of complexes assembled at the ؊2.8-and ؊1.8-kb regions, which share similar properties, and through a qualitatively distinct activity of the ؊3.9-kb complex.
Despite the extraordinary task of packaging mammalian DNA within the constraints of a cell nucleus, individual genes assemble into cell type-specific chromatin structures with high fidelity. This chromatin architecture is a crucial determinant of gene expression signatures that distinguish specific cell types. Whereas extensive progress has been made on defining biochemical and molecular mechanisms of chromatin modification and remodeling, many questions remain unanswered about how cell typespecific chromatin domains assemble and are regulated. This mini-review will discuss emerging studies on how interplay among members of the GATA family of transcription factors establishes and regulates chromatin domains. Dissecting mechanisms underlying the function of hematopoietic GATA factors has revealed fundamental insights into the control of blood cell development from hematopoietic stem cells and the etiology of pathological states in which hematopoiesis is perturbed.
Receptor activator of nuclear factor-kappaB ligand (RANKL) is a TNF-like factor that is both produced by osteoblasts, mesenchymal cells, and activated T cells and required for osteoclast maturation and survival. The gene is up-regulated by the two primary calcemic hormones, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and PTH. Previous studies have indicated that five enhancer regions located significantly upstream of the mouse Rankl transcriptional start site mediate up-regulation by 1,25(OH)2D3 and PTH. The most distal of these, termed mRLD5, is highly conserved in the human gene at -96 kb where it was also shown to be functionally active. Four additional mouse Rankl upstream enhancers are also highly conserved in the human gene at -20, -25, -75, and -87 kb. In the present studies, we characterized the activity of these regions, explored their capacity to mediate the actions of 1,25(OH)2D3, and identified the vitamin D response elements contained within the two most proximal segments. Interestingly, whereas the most distal of the five enhancers is the dominant mediator of 1,25(OH)2D3 activity in the mouse Rankl gene, that role in the human gene is manifested by the most proximal element at -20 kb. Importantly, activity at this region in response to 1,25(OH)2D3 was associated with a significant increase in histone acetylation as well as the enhanced recruitment of RNA polymerase II. Both likely reflect the primary role of this enhancer in human RANKL gene expression. Our studies confirm the complex nature of RANKL regulation and indicate that although the five enhancers are evolutionarily conserved across several species, their relative contributions to RANKL expression in response to 1,25(OH)2D3 may be different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.