Cells cultured in three-dimensional collagen gels express a more native state phenotype because they form a syncytial network that can be mechanically loaded. Moreover, cells remodel their matrix by eliminating water, and by reorganizing and aligning the collagen fibrils. Last, the ability to subject cells to mechanical loading in a native matrix is desirable because cells, in tissues as well as the matrix, bear strains and alter their expression profile consistent with either immobilization, moderate activity, or repetitive loading. This is the first report of a model bioreactor system to fabricate and culture tendon cell-populated, linear, tethered matrix constructs that can be mechanically loaded by a computer-driven, pressure-controlled system. Bioartificial tissues (BATs) as tendon constructs were molded in a novel, rubber bottom Tissue Train culture plate bearing nonwoven nylon mesh anchors at the east and west poles of each culture well. Mechanical loading was achieved by placing an Arctangle loading post (an Arctangle is a rectangle with curved short ends) beneath each well of the six-well culture plate and using vacuum to displace the flexible membrane downward, resulting in uniaxial strain on the BAT. BATs populated with avian flexor tendon cells expressed collagen genes I, III, and XII as well as aggrecan, fibronectin, prolyl hydroxylase, and tenascin, consistent with expression levels of cells grown on collagen-bonded two-dimensional surfaces or in native, whole, avian flexor tendon. Likewise, cells in BATs established a morphology of linearly arranged cells aligned with the principal strain direction as in fasicles of whole tendons. Last, BATs that were mechanically loaded had an ultimate tensile strength that was nearly 3-fold greater than that of nonloaded BATs in the first week of culture. Taken together, these results indicate that tendon cells fabricated in a mechanically loaded, linear collagen gel construct assume a phenotype that is similar to that of a native tendon in terms of appearance and expression and are stronger than nonexercised counterparts yet far weaker than native adult tendons. This technique represents a novel approach to culturing cells in a mechanically active, three-dimensional culture environment that can be readily used for the fabrication of tissue simulates for drug testing or tissue engineering.
Data suggest anabolic steroids may enhance production of bioartificial tendons and rotator cuff tendon healing in vitro. More research is necessary before such clinical use is recommended.
Stiffness is an important mechanical property of connective tissues, especially for tissues subjected to cyclic strain in vivo, such as tendons. Therefore, modulation of material properties of native or engineered tissues is an important consideration for tissue repair. Interleukin 1-beta (IL-1beta) is a cytokine most often associated in connective tissues with induction of matrix metalloproteinases and matrix destruction. However, IL-1beta may also be involved in constructive remodeling and confer a cell survival value to tenocytes. In this study, we investigated the effects of IL-1beta on the properties of human tenocyte-populated bioartificial tendons (BATs) fabricated in a novel three-dimensional (3D) culture system. IL-1beta treatment reduced the ultimate tensile strength and elastic modulus of BATs and increased the maximum strain. IL-1beta at low doses (1, 10 pM) upregulated elastin expression and at a high dose (100 pM) downregulated type I collagen expression. Matrix metalloproteinases, which are involved in matrix remodeling, were also upregulated by IL-1beta. The increased elasticity prevented BATs from rupture caused by applied strain. The results in this study suggest that IL-1beta may act as a defense/survival factor in response to applied mechanical loading. The balance between cell intrinsic strain and external matrix strain is important for maintaining the integrity of tendons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.