A rigorous synthesis of the sea-ice ecosystem and linked ecosystem services highlights that the sea-ice ecosystem supports all 4 ecosystem service categories, that sea-ice ecosystems meet the criteria for ecologically or biologically significant marine areas, that global emissions driving climate change are directly linked to the demise of sea-ice ecosystems and its ecosystem services, and that the sea-ice ecosystem deserves specific attention in the evaluation of marine protected area planning. The synthesis outlines (1) supporting services, provided in form of habitat, including feeding grounds and nurseries for microbes, meiofauna, fish, birds and mammals (particularly the key species Arctic cod, Boreogadus saida, and Antarctic krill, Euphausia superba, which are tightly linked to the sea-ice ecosystem and transfer carbon from sea-ice primary producers to higher trophic level fish, mammal species and humans); (2) provisioning services through harvesting and medicinal and genetic resources; (3) cultural services through Indigenous and local knowledge systems, cultural identity and spirituality, and via cultural activities, tourism and research; (4) (climate) regulating services through light regulation, the production of biogenic aerosols, halogen oxidation and the release or uptake of greenhouse gases, for example, carbon dioxide. The ongoing changes in the polar regions have strong impacts on sea-ice ecosystems and associated ecosystem services. While the response of sea-ice–associated primary production to environmental change is regionally variable, the effect on ice-associated mammals and birds is predominantly negative, subsequently impacting human harvesting and cultural services in both polar regions. Conservation can help protect some species and functions. However, the key mitigation measure that can slow the transition to a strictly seasonal ice cover in the Arctic Ocean, reduce the overall loss of sea-ice habitats from the ocean, and thus preserve the unique ecosystem services provided by sea ice and their contributions to human well-being is a reduction in carbon emissions.
This study aimed to characterize the marine environment in the vicinity of a grounded iceberg near Resolute, Nunavut, and evaluate its potential influence on the surrounding water column. A survey of the physico-chemical properties (salinity, temperature and δ 18 O, as well as nitrate, phosphate and silicic acid concentrations) and phytoplankton biomass was conducted from August 11 th to 29 th , 2014. The water column was strongly stratified throughout the study area due to sea ice melt. The iceberg's interference with the ocean currents resulted in mixing and potentially upwelling in the adjacent water column. A phytoplankton bloom, indicated by high chlorophyll a concentrations (13.7 to 21.0 mg m -3 ) and surface nutrient depletion, was observed and likely began prior to sea ice break up on August 9 th . The presence of icebergs on Arctic continental shelves may influence local coastal current dynamics, although it did not appear to influence nutrient dynamics during this study.iii
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.