A rapid rise of urban population is making cities denser. Consequently, the proportion of impervious surface cover has enlarged, increasing the amount and speed of run‐off reaching urban catchment areas, which may cause flash flooding. Trees play a key role to reduce run‐off in the city, as they intercept rainfall and store part of it on their leaves and branches, reducing the amount and speed of water running onto impervious surfaces. Storage capacity will depend on the rainfall event, the climate conditions and tree characteristics and canopy density. These canopy characteristics vary greatly among different species and their phenology. Furthermore, these canopy characteristics can vary greatly among individual trees of the same age, size, and species. This study tested how canopy density and leaf characteristics of three different tree species affect storage capacity under simulated rainfall conditions. Three species were selected (Ulmus procera, Platanus × acerifolia, and Corymbia maculata), each being of the same height and similar canopy dimensions. Storage capacity was measured using a mass balance approach during a 15‐min indoor, simulated rainfall event (2.5 mm/hr). Canopy metrics were estimated using a terrestrial laser scanner. Canopy surface area was measured through destructive harvest and leaf/twig/branch scanning. To investigate variations in the canopy leaf density, leaves were systematically removed to create four treatments: full, half, quarter, and woody. Canopy storage capacity was well correlated to plant surface area (m2), plant area index (m2/m2), and plant area density (m2/m3). All analyses indicated U. procera as the most efficient species for storing rainfall water within a canopy of equal volume or area index. Results reveal the complexity of evaluating interception of rainfall by tree canopies. This study contributes to the discipline and practice by distinguishing how variation in the leaf density is important to consider when selecting urban tree species to be planted.
This study examines runoff generated under simulated rainfall on Summerford bajada in the Jornada Basin, New Mexico, USA. Forty-five simulation experiments were conducted on 1 m 2 and 2 m 2 runoff plots on grassland, degraded grassland, shrub and intershrub environments located in grassland and shrubland communities. Average hydrographs generated for each environment show that runoff originates earlier on the vegetated plots than on the unvegetated plots. This early generation of runoff is attributed to soil infiltration rates being overwhelmed by the rapid concentration of water at the base of plants by stemflow. Hydrographs from the degraded grassland and intershrub plots rise continuously throughout the 30 min simulation events indicating that these plots do not achieve equilibrium runoff. This continuously rising form is attributed to the progressive development of raindrop-induced surface seals. Most grassland and shrub plots level out after the initial early rise indicating equilibrium runoff is achieved. Some shrub plots, however, display a decline in discharge after the early rise. The delayed infiltration of water into macropores beneath shrubs with vegetation in their understories is proposed to explain this declining form. Water yields predicted at the community level indicate that the shrubland sheds 150 per cent more water for a given storm event than the grassland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.