This study aims to evaluate the potential of using a thermophilic acidophilic red alga, Galdieria sulphuraria for effective on-site treatment of municipal landfill leachate (LL). This study focused on evaluating the effects of LL dilution, nitrogen loading, and initial algal biomass density on the overall treatment efficiency, and evaluated the long-term performance of the system using 5-day growth cycles. This study confirmed that optimal conditions for G. sulphuraria biomass production are 20% strength LL, a lower initial biomass concentration of 0.25 g L−1, and the addition of N at twice the level of initial media. Furthermore, the results indicated G. sulphuraria’s ability to grow in elevated NH4-N concentration (>950 mg L−1) and provide nitrogen removal rates of up to 40 mg L−1 d−1. In addition, the long-term running experiment showed that the proposed algal-based system could be applied in semi-continuous mode to achieve bioremediation. Overall, the results obtained from this study can be used to develop the necessary process parameters to implement large-scale algal-based systems for landfill leachate treatment.
With growing urbanization and ongoing development activities, the consumption of heavy metals has been increasing globally. Although heavy metals are vital for the survival of living beings, they can become hazardous when they surpass the permissible limit. The effect of heavy metals varies from normal to acute depending on the individual, so it is necessary to treat the heavy metals before releasing them into the environment. Various conventional treatment technologies have been used based on physical, chemical, and biological methods. However, due to technical and economic constraints and poor sustainability towards the environment, the use of these technologies has been limited. Microalgal-based heavy metal removal has been explored for the past few decades and has been seen as an effective, environment-friendly, and inexpensive method compared to conventional treatment technology. Cyanidiales that belong to red algae have the potential for remediation of heavy metals as they can withstand and tolerate extreme stresses of heat, acid salts, and heavy metals. Cyanidiales are the only photosynthetic organisms that can survive and thrive in acidic mine drainage, where heavy metal contamination is often prevalent. This review focuses on the algal species belonging to three genera of Cyanidiales: Cyanidioschyzon, Cyanidium, and Galdieria. Papers published after 2015 were considered in order to examine these species’ efficiency in heavy metal removal. The result is summarized as maximum removal efficiency at the optimum experimental conditions and based on the parameters affecting the metal ion removal efficiency. This study finds that pH, initial metal concentration, initial algal biomass concentration, algal strains, and growth temperature are the major parameters that affect the heavy metal removal efficiency of Cyanidiales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.