We compare quasar selection techniques based on their optical variability using data from the Catalina Real-time Transient Survey (CRTS). We introduce a new technique based on Slepian wavelet variance (SWV) that shows comparable or better performance to structure functions and damped random walk models but with fewer assumptions. Combining these methods with WISE mid-IR colors produces a highly efficient quasar selection technique which we have validated spectroscopically. The SWV technique also identifies characteristic timescales in a time series and we find a characteristic rest frame timescale of ∼54 days, confirmed in the light curves of ∼18000 quasars from CRTS, SDSS and MACHO data, and anticorrelated with absolute magnitude. This indicates a transition between a damped random walk and P (f ) ∝ f − 1 3 behaviours and is the first strong indication that a damped random walk model may be too simplistic to describe optical quasar variability.
Wheat accounts for more than 50% of Australia’s total grain production. The capability to generate accurate in-season yield predictions is important across all components of the agricultural value chain. The literature on wheat yield prediction has motivated the need for more novel works evaluating machine learning techniques such as random forests (RF) at multiple scales. This research applied a Random Forest Regression (RFR) technique to build regional and local-scale yield prediction models at the pixel level for three southeast Australian wheat-growing paddocks, each located in Victoria (VIC), New South Wales (NSW) and South Australia (SA) using 2018 yield maps from data supplied by collaborating farmers. Time-series Normalized Difference Vegetation Index (NDVI) data derived from Planet’s high spatio-temporal resolution imagery, meteorological variables and yield data were used to train, test and validate the models at pixel level using Python libraries for (a) regional-scale three-paddock composite and (b) individual paddocks. The composite region-wide RF model prediction for the three paddocks performed well (R2 = 0.86, RMSE = 0.18 t ha−1). RF models for individual paddocks in VIC (R2 = 0.89, RMSE = 0.15 t ha−1) and NSW (R2 = 0.87, RMSE = 0.07 t ha−1) performed well, but moderate performance was seen for SA (R2 = 0.45, RMSE = 0.25 t ha−1). Generally, high values were underpredicted and low values overpredicted. This study demonstrated the feasibility of applying RF modeling on satellite imagery and yielded ‘big data’ for regional as well as local-scale yield prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.