This paper presents the status of an ongoing development of a point detector for biological warfare agent sensing based on ultraviolet laser-induced fluorescence from single particles in air. The detector will measure the fluorescence spectra of single particles in a sheath flow air beam. The spectral detection part of the system consists of a grating and a photomultiplier tube array with 32 channels, which measure fluorescence spectra in the wavelength band from 300 nm to 650 nm. The detector is designed to measure laser induced fluorescence from single laser pulses and has been tested by measuring fluorescence from simulants of biological warfare agents in aqueous solution. The solutions were excited with laser pulses at the wavelengths of 293 nm and 337 nm. The paper also presents preliminary results on the sheath flow particle injector and time-resolved measurements of fluorescence from biological warfare agent simulants in solution.
The capacity of the decontamination unit was found to be 16 volunteers per hour. The ventilation system and guidelines of the decontamination unit were demonstrated to be effective under the conditions examined. The self-decontamination of the staff was not optimal.
Results of our on-going development of biological warfare agents (BWA) detection systems based on spectral detection of ultraviolet (UV) laser induced fluorescence (LIF) are presented. A compact optical parametric oscillator (OPO) with intracavity sum-frequency mixing (SFM) to generate 293 nm UV laser irradiation was developed. The OPO/SFM device was pumped by a diode-pumped Nd:YAG laser (1064 nm), including subsequent second-harmonic generation (SHG) in an external periodically poled KTiOPO 4 (PPKTP) crystal. The laser generated 1.8 ns pulses at 100 Hz with an average power of 44 mW at 532 nm. The whole system could be used to deliver approximately 30 µJ laser irradiation per pulse (100 Hz) at 293 nm. The spectral detection part of the system consists of a grating and a photomultiplier tube (PMT) array with 32 channels, which can measure fluorescence spectra in the wavelength band from 250 nm to 800 nm. The detector system was designed along with a trigger laser to enable measurement of fluorescence spectra from an individual aerosol particle of simulants for BWA upon excitation with a single nanosecond laser pulse. We demonstrate the successful detection and spectral characterization of simulants for BWA, i.e., Bacillus atrophaeus (BG), Bacillus thuringiensis (BT), and Ovalbumin (OA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.