The residential environment is constantly evolving technologically. With this evolution, sensors have become intelligent interconnecting home appliances, personal computers, and mobile devices. Despite the benefits of this interaction, these devices are also prone to security threats and vulnerabilities. Ensuring the security of smart homes is challenging due to the heterogeneity of applications and protocols involved in this environment. This work proposes the FamilyGuard architecture to add a new layer of security and simplify management of the home environment by detecting network traffic anomalies. Experiments are carried out to validate the main components of the architecture. An anomaly detection module is also developed by using machine learning through one-class classifiers based on the network flow. The results show that the proposed solution can offer smart home users additional and personalized security features using low-cost devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.