In chronic kidney disease (CKD), elevated serum levels of the phosphate regulating hormone fibroblast growth factor (FGF) 23 have emerged as powerful risk factors for cardiovascular disease and death. Mechanistically, FGF23 can bind and activate fibroblast growth factor receptor (FGFR) 4 independently of α-klotho, the canonical co-receptor for FGF23 in the kidney, which stimulates left ventricular hypertrophy and hepatic production of inflammatory cytokines. FGF23 has also been shown to independently predict progression of renal disease, however, whether FGF23 and FGFR4 also contribute to CKD remains unknown. Here, we generated a mouse model with dual deletions of FGFR4 and α-klotho, and we induced CKD in mice with either global deletion or constitutive activation of FGFR4. We demonstrate that FGF23 is not capable of inducing phosphaturia via FGFR4 and that FGFR4 does not promote or mitigate renal injury in animal models of CKD. Taken together our results suggest FGFR4 inhibition as a safe alternative strategy to target cardiovascular disease and chronic inflammation in patients with CKD without interrupting the necessary phosphaturic effects of FGF23.
Calcium homeostasis involves a complex interplay between kidneys, parathyroid glands, intestine and bone. Specifically, 1,25(OH)2D3 is a key calciotropic hormone which stimulates intestinal calcium absorption. A growing body of evidence suggests that circulating levels of 1,25(OH)2D3 depend not only on its synthesis under the action of PTH in the kidneys, but also its catabolism by 24-hydroxylase, herein referred to as CYP24A1. The clinical importance of CYP24A1 has been demonstrated by human loss-of-function mutations, which lead to severe hypercalcemia due to exaggerated levels of 1,25(OH)2D3. Despite its growing importance, little is known about its tissue-specific contributions to normal vitamin D metabolism. To explore the physiology of CYP24A1 and delineate renal-specific effects of CYP24A1 in calcium metabolism, we generated a mouse with constitutive kidney-specific deletion of Cyp24a1 (Six2Cre-Cyp24flox). Six2 marks the nephron progenitor population throughout nephrogenesis. We hypothesized that hypercalcemia as seen in CYP24A1 inactivating mutations is related to lack of both renal and extrarenal expression, and that renal deletion does not lead to severe hypercalcemia. To confirm Cyp24a1 deletion, we measured mRNA expression in the kidney using qPCR and RNA in situ hybridization. All mice were fed a standard commercial rodent diet and followed longitudinally for five months with interval calcium measurements. At time of termination, serum PTH levels were measured along with vitamin D-dependent calcium transporters as a functional measure of 1,25(OH)2D3 action. Cyp24a1 expression was significantly knocked down in total kidneys from Six2Cre-Cyp24flox mice as compared to intestinal expression suggesting successful gene deletion. Compared to age-matched wildtype controls, Six2Cre-Cyp24flox mice were mildly but persistently hypercalcemic (diff between means= 0.46 mg/dL, p-value: 0.03, n=8 per group). As expected, 1,25D-dependent calcium transporters in the kidney (Calb1, Trpv5, Slc8a1, Atp2b1) and intestine (Trpv6, s100g) were all increased, consistent with increased systemic 1,25(OH)2D3 activity. PTH levels were appropriately suppressed in the Six2Cre-Cyp24flox mice (diff between means=83 pg/mL, p-value 0.2, n=9 control, n=3 exp) as were renal cyp27b1 mRNA expression. These data suggest that renal CYP24A1 is important for systemic 1,25(OH)2D3 regulation, but the lack of severe hypercalcemia supports critical contributions of extra-renal CYP24A1.
Background: Triamcinolone injections are used to treat various orthopedic and rheumatologic conditions; their effects on the hypothalamic pituitary adrenal axis have not been well characterized. Clinical Case: A 14 yo female was referred to our clinic for evaluation of low TSH (0.16 µIU/mL) and possible hyperthyroidism. There was no goiter and she appeared euthyroid and had normal free T4 (1.01 ng/dl) but she had typical features of Cushing syndrome (CS), including round facies, thinning of hair, fatigue, truncal adiposity, violaceous striae, facial hirsutism and oligomenorrhea. She was previously healthy and participated in many sports. She did not report any history of exogenous glucocorticoid use but the fasting ACTH (4 pg/ml) and cortisol (0.1 µg/dl) levels were suppressed. Subsequent chart review revealed that she received intra-articular Triamcinolone (TA) to treat “slipping rib” syndrome. This included 3 injections of Kenalog 40 mg/mL, the last in July 2019. Her cumulative TA dose was 440 mg, the equivalent of prednisone 550 mg. Triamcinolone acetonide 1.4 mcg/dL (normal 0-0.1, analyzed by LC-MS/MS) was detected in the urine over 3 months after her last injection. Conclusion: - Levels of ACTH and cortisol can be suppressed for several months after intra-articular corticosteroid injections, placing the patient at subsequent risk for adrenal crisis - In some cases, high doses of Triamcinolone administered by intra-articular injection can cause clinical Cushing syndrome
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.