Candida albicans readily forms biofilms on the surface on indwelling medical devices, and these biofilms serve as a source of local and systemic infections. It is estimated that 27% of nosocomial C. albicans bloodstream infections are polymicrobial, with Staphylococcus aureus as the third most common organism isolated in conjunction with C. albicans. We tested whether S. aureus and C. albicans are able to form a polymicrobial biofilm. Although S. aureus formed poor monoculture biofilms in serum, it formed a substantial polymicrobial biofilm in the presence of C. albicans. In terms of architecture, S. aureus formed microcolonies on the surface of the biofilm, with C. albicans serving as the underlying scaffolding. In addition, S. aureus matrix staining revealed a different phenotype in polymicrobial versus monomicrobial biofilms, suggesting that S. aureus may become coated in the matrix secreted by C. albicans. S. aureus resistance to vancomycin was enhanced within the polymicrobial biofilm, required viable C. albicans, and was in part mediated by C. albicans matrix. However, the growth or sensitivity to amphotericin B of C. albicans is not altered in the polymicrobial biofilm.
Current understanding of resistance and susceptibility to vulvovaginal candidiasis challenges existing paradigms of host defence against fungal infection. While abiotic biofilm formation has a clearly established role during systemic Candida infections, it is not known whether C. albicans forms biofilms on the vaginal mucosa and the possible role of biofilms in disease. In vivo and ex vivo murine vaginitis models were employed to examine biofilm formation by scanning electron and confocal microscopy. C. albicans strains included 3153A (lab strain), DAY185 (parental control strain), and mutants defective in morphogenesis and/or biofilm formation in vitro (efg1/efg1 and bcr1/bcr1). Both 3153A and DAY815 formed biofilms on the vaginal mucosa in vivo and ex vivo as indicated by high fungal burden and microscopic analysis demonstrating typical biofilm architecture and presence of extracellular matrix (ECM) co-localized with the presence of fungi. In contrast, efg1/efg1 and bcr1/bcr1 mutant strains exhibited weak or no biofilm formation/ECM production in both models compared to wild-type strains and complemented mutants despite comparable colonization levels. These data show for the first time that C. albicans forms biofilms in vivo on vaginal epithelium, and that in vivo biotic biofilm formation requires regulators of biofilm formation (BCR1) and morphogenesis (EFG1).
Candida albicans is the most prevalent human fungal pathogen, with an ability to inhabit diverse host niches and cause disease in both immunocompetent and immunocompromised individuals. C. albicans also readily forms biofilms on indwelling medical devices and mucosal tissues, which serve as an infectious reservoir that is difficult to eradicate, and can lead to lethal systemic infections. Biofilm formation occurs within a complex milieu of host factors and other members of the human microbiota. Polymicrobial interactions will likely dictate the cellular and biochemical composition of the biofilm, as well as influence clinically relevant outcomes such as drug and host resistance and virulence. In this manuscript, we review C. albicans infections in the context of in vivo polymicrobial biofilms and implications for pathogenesis.
Candida albicans and Staphylococcus aureus form vigorous polymicrobial biofilms in serum, which may serve as the source of coinfection in patients. More importantly, S. aureus is highly resistant to vancomycin during polymicrobial biofilm formation, with no decreases in bacterial viability observed with up to 1,600 g/ml drug. In these mixed-species biofilms, S. aureus preferentially associates with C. albicans hyphae, which express a variety of unique adhesins. We tested C. albicans mutants deficient in transcriptional regulators of morphogenesis (CPH1 and EFG1) and biofilm formation (BCR1) to investigate the role of hyphae in mediating polymicrobial biofilm formation. These mutants also have reduced expression of hypha-specific adhesins. The ability to form polymicrobial biofilms correlated with the ability to form hyphae in these mutants. However, only mutants that could adhere to the abiotic surface could induce S. aureus vancomycin resistance, regardless of the presence of hyphae. In examining factors that may mediate interspecies adhesion, we found that the C. albicans ALS family of adhesins (Als1 to Als7 and Als9) was not involved, and neither was the hypha-specific adhesin Hwp1. Therefore, polymicrobial biofilm formation and subsequent antibiotic resistance is a multifactorial process that may require a unique combination of fungal and/or bacterial adhesins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.