Among the various key networks in the human body, the nervous system occupies central importance. The debilitating effects of spinal cord injuries (SCI) impact a significant number of people throughout the world, and to date, there is no satisfactory method to treat them. In this paper, we review the major treatment techniques for SCI that include promising solutions based on information and communication technology (ICT) and identify the key characteristics of such systems. We then introduce two novel ICT-based treatment approaches for SCI. The first proposal is based on neural interface systems (NIS) with enhanced feedback, where the external machines are interfaced with the brain and the spinal cord such that the brain signals are directly routed to the limbs for movement. The second proposal relates to the design of self-organizing artificial neurons (ANs) that can be used to replace the injured or dead biological neurons. Apart from SCI treatment, the proposed methods may also be utilized as enabling technologies for neural interface applications by acting as bio-cyber interfaces between the nervous system and machines. Furthermore, under the framework of Internet of Bio-Nano Things (IoBNT), experience gained from SCI treatment techniques can be transferred to nano communication research.
Severe Acute Respiratory Syndrome-CoronaVirus 2 (SARS-CoV2) caused the ongoing pandemic. This pandemic devastated the world by killing more than a million people, as of October 2020. It is imperative to understand the transmission dynamics of SARS-CoV2 so that novel and interdisciplinary prevention, diagnostic, and therapeutic techniques could be developed. In this work, we model and analyze the transmission of SARS-CoV2 through the human respiratory tract from a molecular communication perspective. We consider that virus diffusion occurs in the mucus layer so that the shape of the tract does not have a significant effect on the transmission. Hence, this model reduces the inherent complexity of the human respiratory system. We further provide the impulse response of SARS-CoV2-ACE2 receptor binding event to determine the proportion of the virus population reaching different regions of the respiratory tract. Our findings confirm the results in the experimental literature on higher mucus flow rate causing virus migration to the lower respiratory tract. These results are especially important to understand the effect of SARS-CoV2 on the different human populations at different ages who have different mucus flow rates and ACE2 receptor concentrations in the different regions of the respiratory tract.
The New Space Era has increased communication traffic in space by new space missions led by public space agencies and private companies. Mars colonization is also targeted by crewed missions in the near future. Due to increasing space traffic near Earth and Mars, the bandwidth is getting congested. Moreover, the downlink performance of the current missions is not satisfactory in terms of delay and data rate. Therefore, to meet the increasing demand in space links, Terahertz band (0.1-10 THz) wireless communications are proposed in this study. In line with this, we discuss the major challenges that the realization of THz band space links pose and possible solutions. Moreover, we simulate Mars-space THz links for the case of a clear Mars atmosphere, and a heavy dust storm to show that even in the worst conditions, a large bandwidth is available for Mars communication traffic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.