Bone marrow-derived stromal cells (BMSCs) protect against acute lung injury (ALI). To determine the role of BMSC mitochondria in the protection, we airway-instilled mice first with lipopolysaccharide (LPS), then with mouse BMSCs (mBMSCs). Live optical studies revealed that mBMSCs formed connexin 43 (Cx43)-containing gap junctional channels (GJCs) with the alveolar epithelium, releasing mitochondria-containing microvesicles that the epithelium engulfed. The presence of BMSC mitochondria in the epithelium was evident optically, as also by the presence of human mitochondrial DNA in mouse lungs in which we instilled human BMSCs (hBMSCs). The mitochondrial transfer increased alveolar ATP. LPS-induced ALI, indicated by alveolar leukocytosis and protein leak, inhibition of surfactant secretion and high mortality, was markedly abrogated by wild type mBMSCs, but not by mutant, GJC-incompetent mBMSCs, or by mBMSCs with dysfunctional mitochondria. This is the first evidence that BMSCs protect against ALI by restituting alveolar bioenergetics through Cx43-dependent alveolar attachment and mitochondrial transfer.
Shedding of the extracellular domain of cytokine receptors allows the diffusion of soluble receptors into the extracellular space; these then bind and neutralize their cytokine ligands, thus dampening inflammatory responses. The molecular mechanisms that control this process, and the extent to which shedding regulates cytokine-induced microvascular inflammation, are not well defined. Here, we used real-time confocal microscopy of mouse lung microvascular endothelium to demonstrate that mitochondria are key regulators of this process. The proinflammatory cytokine soluble TNF-α (sTNF-α) increased mitochondrial Ca 2+ , and the purinergic receptor P 2 Y 2 prolonged the response. Concomitantly, the proinflammatory receptor TNF-α receptor-1 (TNFR1) was shed from the endothelial surface. Inhibiting the mitochondrial Ca 2+ increase blocked the shedding and augmented inflammation, as denoted by increases in endothelial expression of the leukocyte adhesion receptor E-selectin and in microvascular leukocyte recruitment. The shedding was also blocked in microvessels after knockdown of a complex III component and after mitochondria-targeted catalase overexpression. Endothelial deletion of the TNF-α converting enzyme (TACE) prevented the TNF-α receptor shedding response, which suggests that exposure of microvascular endothelium to sTNF-α induced a Ca 2+ -dependent increase of mitochondrial H 2 O 2 that caused TNFR1 shedding through TACE activation. These findings provide what we believe to be the first evidence that endothelial mitochondria regulate TNFR1 shedding and thereby determine the severity of sTNF-α-induced microvascular inflammation.
BackgroundInsufficient sleep increases blood pressure. However, the effects of milder, highly prevalent but frequently neglected sleep disturbances, including poor sleep quality and insomnia, on vascular health in women are unclear. We investigated whether poor sleep patterns are associated with blood pressure and endothelial inflammation in a diverse sample of women.Methods and ResultsWomen who participated in the ongoing American Heart Association Go Red for Women Strategically Focused Research Network were studied (n=323, 57% minority, mean age=39±17 years, range=20–79 years). Sleep duration, sleep quality, and time to sleep onset were assessed using the Pittsburgh Sleep Quality Index (score ≥5=poor sleep quality). Risk for obstructive sleep apnea was evaluated using the Berlin questionnaire, and insomnia was assessed using the Insomnia Severity Index. In a subset of women who participated in the basic study (n=26), sleep duration was assessed objectively using actigraphy, and endothelial inflammation was assessed directly in harvested endothelial cells by measuring nuclear translocation of nuclear factor kappa B. Vascular reactivity was measured by brachial artery flow‐mediated dilation (n=26). Systolic and diastolic blood pressure were measured by trained personnel (n=323). Multivariable linear regressions were used to evaluate associations between sleep patterns and blood pressure, nuclear factor kappa B, and flow‐mediated dilation. Mean sleep duration was 6.8±1.3 hours/night in the population study and 7.5±1.1 hour/night in the basic study. In the population study sample, 50% had poor sleep quality versus 23% in the basic study, and 37% had some level of insomnia versus 15% in the basic study. Systolic blood pressure was associated directly with poor sleep quality, and diastolic blood pressure was of borderline significance with obstructive sleep apnea risk after adjusting for confounders (P=0.04 and P=0.08, respectively). Poor sleep quality was associated with endothelial nuclear factor kappa B activation (β=30.6; P=0.03). Insomnia and longer sleep onset latency were also associated with endothelial nuclear factor kappa B activation (β=27.6; P=0.002 and β=8.26; P=0.02, respectively). No evidence was found for an association between sleep and flow‐mediated dilation.ConclusionsThese findings provide direct evidence that common but frequently neglected sleep disturbances such as poor sleep quality and insomnia are associated with increased blood pressure and vascular inflammation even in the absence of inadequate sleep duration in women.Clinical Trial Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT02835261.
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH) during transient cessation of breathing, triples the risk for cardiovascular diseases. We used a phage display peptide library as an unbiased approach to investigate whether IH, which is specific to OSA, activates endothelial cells (ECs) in a distinctive manner. The target of a differentially bound peptide on ECs collected from OSA patients was identified as CD59, a major complement inhibitor that protects ECs from the membrane attack complex (MAC). A decreased proportion of CD59 is located on the EC surface in OSA patients compared with controls, suggesting reduced protection against complement attack. In vitro, IH promoted endothelial inflammation predominantly via augmented internalization of CD59 and consequent MAC deposition. Increased internalization of endothelial CD59 in IH appeared to be cholesterol-dependent and was reversed by statins in a CD59-dependent manner. These studies suggest that reduced complement inhibition may mediate endothelial inflammation and increase vascular risk in OSA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.