The vast majority of the work on adaptive data analysis focuses on the case where the samples in the dataset are independent. Several approaches and tools have been successfully applied in this context, such as differential privacy, max-information, compression arguments, and more. The situation is far less well-understood without the independence assumption.We embark on a systematic study of the possibilities of adaptive data analysis with correlated observations. First, we show that, in some cases, differential privacy guarantees generalization even when there are dependencies within the sample, which we quantify using a notion we call Gibbs-dependence. We complement this result with a tight negative example. Second, we show that the connection between transcript-compression and adaptive data analysis can be extended to the non-iid setting.
We give an algorithmically efficient version of the learner-to-compression scheme conversion in . In extending this technique to realvalued hypotheses, we also obtain an efficient regression-to-bounded sample compression converter. To our knowledge, this is the first general compressed regression result (regardless of efficiency or boundedness) guaranteeing uniform approximate reconstruction. Along the way, we develop a generic procedure for constructing weak real-valued learners out of abstract regressors; this may be of independent interest. In particular, this result sheds new light on an open question of H. Simon (1997). We show applications to two regression problems: learning Lipschitz and bounded-variation functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.