A modern flow cytometer can analyze and sort particles on a one by one basis at rates of 50,000 particles per second. Flow cytometers can also measure as many as 17 channels of fluorescence, several angles of scattered light, and other non-optical parameters such as particle impedance. More specialized flow cytometers can provide even greater analysis power, such as single molecule detection, imaging, and full spectral collection, at reduced rates. These capabilities have made flow cytometers an invaluable tool for numerous applications including cellular immunophenotyping, CD4+ T-cell counting, multiplex microsphere analysis, high-throughput screening, and rare cell analysis and sorting. Many bio-analytical techniques have been influenced by the advent of microfluidics as a component in analytical tools and flow cytometry is no exception. Here we detail the functions and uses of a modern flow cytometer, review the recent and historical contributions of microfluidics and microfabricated devices to field of flow cytometry, examine current application areas, and suggest opportunities for the synergistic application of microfabrication approaches to modern flow cytometry.
Flow cytometry can simultaneously measure and analyze multiple properties of single cells or particles with high sensitivity and precision. Yet, conventional flow cytometers have fundamental limitations with regards to analyzing particles larger than about 70 microns, analyzing at flow rates greater than a few hundred microliters per minute, and providing analysis rates greater than 50,000 per second. To overcome these limits, we have developed multi-node acoustic focusing flow cells that can position particles (as small as a red blood cell and as large as 107 microns in diameter) into as many as 37 parallel flow streams. We demonstrate the potential of such flow cells for the development of high throughput, parallel flow cytometers by precision focusing of flow cytometry alignment microspheres, red blood cells, and the analysis of CD4+ cellular immunophenotyping assay. This approach will have significant impact towards the creation of high throughput flow cytometers for rare cell detection applications (e.g. circulating tumor cells), applications requiring large particle analysis, and high volume flow cytometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.