Acute itch is divided into histamine- and non-histamine-dependent subtypes, and our previous study has shown that activation of ERK signaling in the spinal dorsal horn (SDH) is required selectively for histamine-induced itch sensation. Morphological characteristics of pERK-expressing neurons are required for exploring the mechanism underlying spinal itch sensation. To investigate whether pERK-expressing neurons are supraspinally-projecting neurons, we injected Fluorogold (FG) into the ventrobasal thalamic complex (VB) and parabrachial region, the two major spinal ascending sites in rodents. A small number (1%) of pERK-positive neurons were labeled by FG, suggesting that histamine-induced activation of ERK is primarily located in local SDH neurons. We then examined the co-localization of pERK with Calbindin and Lmx1b, which are expressed by excitatory neurons, and found that more than half (58%) of pERK-positive neurons expressed Lmx1b, but no co-expression with Calbindin was observed. On the other hand, approximately 7% of pERK-positive neurons expressed GAD67, and 27% of them contained Pax2. These results support the idea that pERK-expressing neurons serve as a component of local neuronal circuits for processing itch sensation in the spinal cord.
Recent studies have shown that ZBTB20, a zinc-finger protein containing transcription factor, is highly expressed in small-diameter primary sensory neurons in mice, and modulates pain through regulating TRP channels. However, whether ZBTB20 regulates itch sensation has not been demonstrated. In this study, small-diameter primary sensory neuron-specific ZBTB20 knockout (PN-ZB20KO) mice were used to investigate the role of ZBTB20 in the regulation of itch sensation. First, both histamine-dependent and non-histamine-dependent itch behaviors induced by injection of histamine and chloroquine (CQ) into the cheek were significantly diminished in PN-ZB20KO mice. Second, double immunohistochemistry showed that ZBTB20 was mainly expressed in CGRP-labeled small peptidergic neurons and was expressed at low levels in IB4-labeled small non-peptidergic and NF200-labeled large neurons in the trigeminal ganglia (TG). ZBTB20 was also expressed in most TRPV1+ and TRPA1+ neurons and to a lesser extent in TRPM8+ neurons in the TG. Furthermore, cheek injection of histamine and CQ enhanced the mRNA expression of TRPV1 and TRPA1 but not TRPM8 in the TG. Moreover, TRPV1 and TRPA1 knockout (KO) mice exhibited attenuation of itch behavior induced by histamine and CQ, respectively. Finally, silencing endogenous ZBTB20 with recombinant lentivirus expressing a short hairpin RNA against ZBTB20 (LV-shZBTB20) in TG neurons attenuated histamine- and non-histamine-induced itch and downregulated TRP channels in the TG. Our study suggests that ZBTB20 plays an important role in mediating itch in small primary sensory neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.