BackgroundMissing value imputation is important for microarray data analyses because microarray data with missing values would significantly degrade the performance of the downstream analyses. Although many microarray missing value imputation algorithms have been developed, an objective and comprehensive performance comparison framework is still lacking. To solve this problem, we previously proposed a framework which can perform a comprehensive performance comparison of different existing algorithms. Also the performance of a new algorithm can be evaluated by our performance comparison framework. However, constructing our framework is not an easy task for the interested researchers. To save researchers’ time and efforts, here we present an easy-to-use web tool named MVIAeval (Missing Value Imputation Algorithm evaluator) which implements our performance comparison framework.ResultsMVIAeval provides a user-friendly interface allowing users to upload the R code of their new algorithm and select (i) the test datasets among 20 benchmark microarray (time series and non-time series) datasets, (ii) the compared algorithms among 12 existing algorithms, (iii) the performance indices from three existing ones, (iv) the comprehensive performance scores from two possible choices, and (v) the number of simulation runs. The comprehensive performance comparison results are then generated and shown as both figures and tables.ConclusionsMVIAeval is a useful tool for researchers to easily conduct a comprehensive and objective performance evaluation of their newly developed missing value imputation algorithm for microarray data or any data which can be represented as a matrix form (e.g. NGS data or proteomics data). Thus, MVIAeval will greatly expedite the progress in the research of missing value imputation algorithms.
BackgroundInvestigating association between genes can be used in understanding the relations of genes in biological processes. STRING and GeneMANIA are two well-known web tools which can provide a list of associated genes of a query gene based on diverse biological associations such as co-expression, co-localization, co-citation and so on. However, the transcriptional regulation association and mutant phenotype association have not been used in these two web tools. Since the comprehensive transcription factor (TF)-gene binding data, TF-gene regulation data and mutant phenotype data are available in yeast, we developed a web tool called YAGM (Yeast Associated Genes Miner) which constructed the transcriptional regulation association, mutant phenotype association and five commonly used biological associations to mine a list of associated genes of a query yeast gene.DescriptionIn YAGM, we collected seven kinds of datasets including TF-gene binding (TFB) data, TF-gene regulation (TFR) data, mutant phenotype (MP) data, functional annotation (FA) data, physical interaction (PI) data, genetic interaction (GI) data, and literature evidence (LE) data. Then by using the hypergeometric test to calculate the association scores of all gene pairs in yeast, we constructed seven biological associations including two transcriptional regulation associations (TFB association and TFR association), MP association, FA association, PI association, GI association, and LE association. Moreover, the expression profile association from SPELL database was also included in YAGM. When using YAGM, users can input a query gene and choose any possible subsets of the eight biological associations, then a list of associated genes of the query gene will be returned based on the chosen biological associations.ConclusionsIn this study, we presented the YAGM which provides eight biological associations for mining associated genes of a query gene in yeast. Among the eight biological associations constructed in YAGM, three (TFB association, TFR association, and MP association) are novel ones. By comparing the query results of two well-known web tools (STRING and GeneMANIA), we found that YAGM can find out distinct associated genes of a query gene. That is, YAGM can provide alternative candidates of associated genes for biologists to do further experimental investigation. We believe that YAGM will be a useful web tool for yeast biologists. YAGM is available online at http://cosbi3.ee.ncku.edu.tw/yagm/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.