The endosymbiotic bacterium Wolbachia shows viral blocking in its mosquito host, leading to its use in arboviral disease control. Releases with Wolbachia strains wMel and wAlbB infecting Aedes aegypti have taken place in several countries. Mosquito egg survival is a key factor influencing population persistence and this trait is also important when eggs are stored prior to releases. We therefore tested the viability of mosquitoes derived from Wolbachia wMel and wAlbB-infected as well as uninfected eggs after long-term storage under diurnal temperature cycles of 11–19°C and 22–30°C. Eggs stored at 11–19°C had higher hatch proportions than those stored at 22–30°C. Adult Wolbachia density declined when they emerged from eggs stored for longer, which was associated with incomplete cytoplasmic incompatibility (CI) when wMel-infected males were crossed with uninfected females. Females from stored eggs at both temperatures continued to show perfect maternal transmission of Wolbachia, but storage reduced the fecundity of both wMel and wAlbB-infected females relative to uninfected mosquitoes. Furthermore, we found a very strong negative impact of the wAlbB infection on the fertility of females stored at 22–30°C, with almost 80% of females hatching after 11 weeks of storage being infertile. Our findings provide guidance for storing Wolbachia-infected A. aegypti eggs to ensure high fitness adult mosquitoes for release. Importantly, they also highlight the likely impact of egg quiescence on the population dynamics of Wolbachia-infected populations in the field, and the potential for Wolbachia to suppress mosquito populations through cumulative fitness costs across warm and dry periods, with expected effects on dengue transmission.
Mosquitoes carrying Wolbachia endosymbionts are being released in many countries for arbovirus control. The wMel strain of Wolbachia blocks Aedes-borne virus transmission and can spread throughout mosquito populations by inducing cytoplasmic incompatibility. Aedes aegypti mosquitoes carrying wMel were first released into the field in Cairns, Australia, over a decade ago, and with wider releases have resulted in the near elimination of local dengue transmission. The long-term stability of Wolbachia effects is critical for ongoing disease suppression, requiring tracking of phenotypic and genomic changes in Wolbachia infections following releases. We used a combination of field surveys, phenotypic assessments, and Wolbachia genome sequencing to show that wMel has remained stable in its effects for up to a decade in Australian Ae. aegypti populations. Phenotypic comparisons of wMel-infected and uninfected mosquitoes from near-field and long-term laboratory populations suggest limited changes in the effects of wMel on mosquito fitness. Treating mosquitoes with antibiotics used to cure the wMel infection had limited effects on fitness in the next generation, supporting the use of tetracycline for generating uninfected mosquitoes without off-target effects. wMel has a temporally stable within-host density and continues to induce complete cytoplasmic incompatibility. A comparison of wMel genomes from pre-release (2010) and nine years post-release (2020) populations show few genomic differences and little divergence between release locations, consistent with the lack of phenotypic changes. These results indicate that releases of Wolbachia-infected mosquitoes for population replacement are likely to be effective for many years, but ongoing monitoring remains important to track potential evolutionary changes.
Modified Aedes aegypti mosquitoes are being mass-reared for release in disease control programs around the world. Releases involving female mosquitoes rely on them being able to seek and feed on human hosts. To facilitate the mass-production of mosquitoes for releases, females are often provided blood through artificial membrane feeders. When reared across generations there is a risk that mosquitoes will adapt to feeding on membranes and lose their ability to feed on human hosts. To test adaptation to membrane feeding, we selected replicate populations of Ae. aegypti for feeding on either human arms or membrane feeders for at least 8 generations. Membrane-selected populations suffered fitness costs, likely due to inbreeding depression arising from bottlenecks. Membrane-selected females had higher feeding rates on membranes than human-selected ones, suggesting adaptation to membrane feeding, but they maintained their attraction to host cues and feeding ability on humans despite a lack of selection for these traits. Host-seeking ability in small laboratory cages did not differ between populations selected on the two blood sources, but membrane-selected females were compromised in a semi-field enclosure where host-seeking was tested over a longer distance. Our findings suggest that Ae. aegypti may adapt to feeding on blood provided artificially, but this will not substantially compromise field performance or affect experimental assessments of mosquito fitness. However, large population sizes (thousands of individuals) during mass rearing with membrane feeders should be maintained to avoid bottlenecks which lead to inbreeding depression.
In recent decades, the occurrence and distribution of arboviral diseases transmitted by Aedes aegypti mosquitoes has increased. In a new control strategy, populations of mosquitoes infected with Wolbachia are being released to replace existing populations and suppress arboviral disease transmission. The success of this strategy can be affected by high temperature exposure, but the impact of low temperatures on Wolbachia-infected Ae. aegypti is unclear, even though low temperatures restrict the abundance and distribution of this species. In this study, we considered low temperature cycles relevant to the spring season that are close to the distribution limits of Ae. aegypti, and tested the effects of these temperature cycles on Ae. aegypti, Wolbachia strains wMel and wAlbB, and Wolbachia phage WO. Low temperatures influenced Ae. aegypti life-history traits, including pupation, adult eclosion, and fertility. The Wolbachia-infected mosquitoes, especially wAlbB, performed better than uninfected mosquitoes. Temperature shift experiments revealed that low temperature effects on life history and Wolbachia density depended on the life stage of exposure. Wolbachia density was suppressed at low temperatures but densities recovered with adult age. In wMel Wolbachia there were no low temperature effects specific to Wolbachia phage WO. The findings suggest that Wolbachia-infected Ae. aegypti are not adversely affected by low temperatures, indicating that the Wolbachia replacement strategy is suitable for areas experiencing cool temperatures seasonally.
Mosquito-borne diseases such as dengue, Zika and chikungunya remain a major cause of morbidity and mortality across tropical regions. Population replacement strategies involving the wMel strain of Wolbachia are being used widely to control mosquito-borne diseases transmitted by Aedes aegypti. However, these strategies may be influenced by environmental temperature because wMel is vulnerable to heat stress. wMel infections in their native host Drosophila melanogaster are genetically diverse, but few transinfections of wMel variants have been generated in Ae. aegypti mosquitoes. Here we successfully transferred a wMel variant (termed wMelM) originating from a field-collected D. melanogaster population from Victoria, Australia into Ae. aegypti. The new wMelM variant (clade I) is genetically distinct from the original wMel transinfection (clade III) generated over ten years ago, and there are no genomic differences between wMelM in its original and transinfected host. We compared wMelM with wMel in its effects on host fitness, temperature tolerance, Wolbachia density, vector competence, cytoplasmic incompatibility and maternal transmission under heat stress in a controlled background. wMelM showed a higher heat tolerance than wMel, with stronger cytoplasmic incompatibility and maternal transmission when eggs were exposed to heat stress, likely due to higher overall densities within the mosquito. Both wMel variants had minimal host fitness costs, complete cytoplasmic incompatibility and maternal transmission, and dengue virus blocking under standard laboratory conditions. Our results highlight phenotypic differences between closely related Wolbachia variants. wMelM shows potential as an alternative strain to wMel in dengue control programs in areas with strong seasonal temperature fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.