Diabetes is a chronic metabolic disease that is increasing in prevalence and causes many complications. Diabetic cardiomyopathy (DCM) is a complication of diabetes that is associated with high mortality, but it is not well defined. Nevertheless, it is generally accepted that DCM refers to a clinical disease that occurs in patients with diabetes and involves ventricular dysfunction, in the absence of other cardiovascular diseases, such as coronary atherosclerotic heart disease, hypertension, or valvular heart disease. However, it is currently uncertain whether the pathogenesis of DCM is directly attributable to metabolic dysfunction or secondary to diabetic microangiopathy. Oxidative stress (OS) is considered to be a key component of its pathogenesis. The production of reactive oxygen species (ROS) in cardiomyocytes is a vicious circle, resulting in further production of ROS, mitochondrial DNA damage, lipid peroxidation, and the post-translational modification of proteins, as well as inflammation, cardiac hypertrophy and fibrosis, ultimately leading to cell death and cardiac dysfunction. ROS have been shown to affect various signaling pathways involved in the development of DCM. For instance, OS causes metabolic disorders by affecting the regulation of PPARα, AMPK/mTOR, and SIRT3/FOXO3a. Furthermore, OS participates in inflammation mediated by the NF-κB pathway, NLRP3 inflammasome, and the TLR4 pathway. OS also promotes TGF-β-, Rho-ROCK-, and Notch-mediated cardiac remodeling, and is involved in the regulation of calcium homeostasis, which impairs ATP production and causes ROS overproduction. In this review, we summarize the signaling pathways that link OS to DCM, with the intention of identifying appropriate targets and new antioxidant therapies for DCM.
Rationale: The treatment of dilated cardiomyopathy (DCM) has recently been greatly improved, especially with the widespread use of sacubitril/valsartan (ARNI) combination therapy. We know that ARNI-like drugs can significantly improve the symptoms of heart failure with reducing ejection fraction. However, clinical studies evaluating the safety and efficacy of ARNI in DCM-associated arrhythmia are limited, and whether individuals with arrhythmia would benefit from ARNI remains controversial. In this case, we report a patient with complete left bundle branch block (CLBBB) associated with DCM whose CLBBB returned to normal after treatment with ARNI.Patient concerns: A 38-year-old man was admitted to the hospital for 20 days for idiopathic paroxysmal dyspnea. He presented with exacerbated dyspnea symptoms at night, accompanied by cough and sputum.Diagnosis: Physical examination revealed a grade 4/6 systolic murmur could be heard in the apical area of the heart and mild edema was present in both lower limbs. Laboratory examination found that the B-type natriuretic peptide was significantly increased. Echocardiography indicated left atrial internal diameter, right ventricular internal diameter, and left ventricular diastolic diameter were enlarged and ejection fraction was significantly decreased. Besides, the pulsation of the wall was diffusely attenuated. Electrocardiogram was suggestive of tachycardia and CLBBB. A diagnosis of DCM with CLBBB was considered based on a comprehensive evaluation of the physical examination, laboratory examination, echocardiography and electrocardiogram. Interventions:The patient was treated with ARNI at a dose of 50 mg (twice a day) at first, gradually increasing to the target dose (200 mg, twice a day) in the following 9 months as shown in Table 1, along with metoprolol 25 mg (once a day [qd]), diuretics 20 mg (qd), and aldosterone 20 mg (qd).Outcomes: After treatment with ARNI during the 9-month follow-up, the patient's symptoms improved, and CLBBB returned to normal.Lessons: Clinical studies evaluating the safety and efficacy of ARNI in DCM-associated arrhythmia are limited, and whether individuals with arrhythmia would benefit from ARNI remains controversial. This report will help to instruct the clinical treatment of DCM patients with CLBBB and the potential application of ARNI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.