Motivation A large number of studies have shown that circular RNA (circRNA) affects biological processes by competitively binding miRNA, providing a new perspective for the diagnosis, and treatment of human diseases. Therefore, exploring the potential circRNA-miRNA interactions (CMIs) is an important and urgent task at present. Although some computational methods have been tried, their performance is limited by the incompleteness of feature extraction in sparse networks and the low computational efficiency of lengthy data. Results In this paper, we proposed JSNDCMI, which combines the multi-structure feature extraction framework and Denoising Autoencoder (DAE) to meet the challenge of CMI prediction in sparse networks. In detail, JSNDCMI integrates functional similarity and local topological structure similarity in the CMI network through the multi-structure feature extraction framework, then forces the neural network to learn the robust representation of features through DAE and finally uses the Gradient Boosting Decision Tree classifier to predict the potential CMIs. JSNDCMI produces the best performance in the 5-fold cross-validation of all data sets. In the case study, seven of the top 10 CMIs with the highest score were verified in PubMed. Availability The data and source code can be found at https://github.com/1axin/JSNDCMI.
More and more evidence suggests that circRNA plays a vital role in generating and treating diseases by interacting with miRNA. Therefore, accurate prediction of potential circRNA–miRNA interaction (CMI) has become urgent. However, traditional wet experiments are time-consuming and costly, and the results will be affected by objective factors. In this paper, we propose a computational model BCMCMI, which combines three features to predict CMI. Specifically, BCMCMI utilizes the bidirectional encoding capability of the BERT algorithm to extract sequence features from the semantic information of circRNA and miRNA. Then, a heterogeneous network is constructed based on cosine similarity and known CMI information. The Metapath2vec is employed to conduct random walks following meta-paths in the network to capture topological features, including similarity features. Finally, potential CMIs are predicted using the XGBoost classifier. BCMCMI achieves superior results compared to other state-of-the-art models on two benchmark datasets for CMI prediction. We also utilize t-SNE to visually observe the distribution of the extracted features on a randomly selected dataset. The remarkable prediction results show that BCMCMI can serve as a valuable complement to the wet experiment process.
LncRNA-protein interaction plays an important role in the development and treatment of many human diseases. As the experimental approaches to determine lncRNA–protein interactions are expensive and time-consuming, considering that there are few calculation methods, therefore, it is urgent to develop efficient and accurate methods to predict lncRNA-protein interactions. In this work, a model for heterogeneous network embedding based on meta-path, namely LPIH2V, is proposed. The heterogeneous network is composed of lncRNA similarity networks, protein similarity networks, and known lncRNA-protein interaction networks. The behavioral features are extracted in a heterogeneous network using the HIN2Vec method of network embedding. The results showed that LPIH2V obtains an AUC of 0.97 and ACC of 0.95 in the 5-fold cross-validation test. The model successfully showed superiority and good generalization ability. Compared to other models, LPIH2V not only extracts attribute characteristics by similarity, but also acquires behavior properties by meta-path wandering in heterogeneous networks. LPIH2V would be beneficial in forecasting interactions between lncRNA and protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.