We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.
Although transparent radiative cooling is a passive cooling strategy with practical applications and aesthetic appeal, complex manufacturing processes and the use of environmentally unfriendly thermal emitters remain latent problems. Herein, eco‐friendly transparent silk radiative cooling (TSRC) films are developed, regenerated from natural silkworm cocoons, for zero‐energy‐consumption thermal management of optoelectronic devices. These TSRC films can dissipate heat radiatively through molecular vibrations of the protein backbone and side chains, while retaining the function and appearance of the associated devices, due to their high visible transparency. Theoretical and experimental investigations revealed that the thermal emission increases rapidly upon increasing the film thickness, but slowly thereafter achieves saturation; nevertheless, the intrinsic solar absorption of silk in the ultraviolet and near‐infrared regions also grows linearly, unavoidably weakening the cooling effect. After spectroscopic optimization, the maximum cooling power during the daytime and nighttime is improved to 77.6 and 101.7 W m−2, respectively. Gratifyingly, the films have a remarkable effect on the cooling performance of electronic devices under sunlight. For example, the TSRC film provides a temperature drop of 5.1 °C for a smartphone during multitasking and charging, and 14 °C for a silicon solar panel with an improvement in the photoelectronic conversion efficiency (≈7%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.