Cancer is currently one of the leading causes of death worldwide and is one of the most challenging major public health problems. The main challenges faced by clinicians in the management and treatment of cancer mainly arise from difficulties in early diagnosis and the emergence of tumor chemoresistance and metastasis. The structures of chemokine receptor 9 (CCR9) and its specific ligand chemokine ligand 25 (CCL25) have been elucidated, and, interestingly, a number of studies have demonstrated that CCR9 is a potential tumor biomarker in diagnosis and therapy, as it has been found to be highly expressed in a wide range of cancers. This expression pattern suggests that CCR9 may participate in many important biological activities involved in cancer progression. Researchers have shown that CCR9 that has been activated by its specific ligand CCL25 can interact with many signaling pathways, especially those involved in tumor chemoresistance and metastasis. This review, therefore, focuses on CCR9 induction activity and summarizes what is currently known regarding its role in cancers and its potential application in tumor-targeted therapy.
Conflicting reports regarding whether high tumor-associated neutrophils (TAN) are associated with outcomes in colorectal cancer (CRC) exist. Previous investigators have counted TAN using non-neutrophil-specific immunohistochemistry (IHC) stains. We examined whether TAN levels as determined by multi-field manual counting would predict prognosis. IRB approval was obtained and two pathologists, blinded to stage/outcome, counted TAN in 20 high power fields (HPF) per specimen. TAN score was defined as the mean of these counts. High TAN was defined as at or greater than the median score for that stage. Demographics, tumor characteristics, and overall survival (OS) were obtained from the records and examined for association with TAN score. IHC for arginase expression was performed in a subset of samples. 221 patients were included. Stage II patients with high TAN scores had an OS of 232 months as compared to those with low TAN (OS = 85 months, p = 0.03). The survival benefit persisted in multivariable analysis (HR 0.48, CI 0.25–0.91, p = 0.026) controlling for age and sex. Women had increased survival as compared to men, and there were no significant prognostic associations with TAN count in stage III/IV patients, although there were only 12 stage IV patients. Arginase staining did not provide additional information. Stage II colorectal cancer patients with high TAN live nearly 3 times longer than those with low TAN. Women with stage II disease and high TAN counts appear to be driving the survival benefit seen in the stage II patients and have increased overall survival in all stages.
Abstract. Paternally expressed imprinted gene 10 (PEG10), derived from the Ty3/Gypsy family of retrotransposons, has been implicated as a genetic imprinted gene. Accumulating evidence suggests that PEG10 plays an important role in tumor growth in various cancers, including hepatocellular carcinoma, lung cancer and prostate cancer. However, the correlation between PEG10 and breast cancer remains unclear.In the present study, we evaluated and characterized the role of PEG10 in human breast cancer proliferation, cell cycle, clone formation, migration and invasion. The expression level of PEG10 was significantly elevated in breast cancer tissues and associated with distant metastasis and poor clinical outcome. Gene set enrichment analysis indicated that high expression of PEG10 could enrich cell cycle-related processes in breast cancer tissues. Ectopic overexpression of PEG10 in breast cancer cells enhanced cell proliferation, cell cycle, clone formation along with migration and invasion. Cell-to-cell junction molecule E-cadherin was downregulated and matrix degradation proteases MMP-1, MMP-2, MMP-9 were up regulated after PEG10 overexpression. Our results demonstrated that PEG10 is a crucial oncogene and has prognostic value for breast cancer, which could be applied in breast cancer diagnosis and targeting therapy in future.
Metastasis is the major cause of death in patients with non-small cell lung cancer (NSCLC), and epithelial-mesenchymal transition (EMT) has been observed to be one of the key regulators of metastasis in certain cancers as it confers an invasive phenotype. CD133 is a widely used cancer stem cell (CSC) marker, and CD133-positive cancer cells are thought to be tumor-initiating cells with CSC characteristics, while CXCR4, a stromal-derived-factor-1 specific chemokine receptor, is highly expressed in NSCLC tissues and participates in cancer progression by regulating cell anti-apoptosis. We previously demonstrated that CXCR4 promotes NSCLC chemoresistance by upregulating CYP1B1, however, the relationship of CD133, CXCR4 and EMT processes in NSCLC metastasis are unclear. In this study, we detected a CD133 and CXCR4 high expression in tissue specimens from 64 NSCLC patients by immunohistochemistry, of which CD133 and CXCR4 were found to be positively associated with metastatic NSCLC patients. CD133 was found to promote NSCLC tumorigenesis and mediated the expression of CXCR4. Furthermore, CD133/CXCR4 co-expression was found to be an independent prognostic factor as shown by univariate and multivariate Cox regression analysis, and was observed to regulate the expression of EMT-related molecules and transcriptional factors in NSCLC. In addition, our results showed that E-cadherin and Vimentin were simultaneously downregulated and upregulated, in CD133+CXCR4+ A549 cells, respectively. While E-cadherin was upregulated and Vimentin was downregulated in metastatic NSCLC patients. Vimentin expression was also observed to have a positive correlation with CD133/CXCR4 co-expression in NSCLC patients and survival analysis results suggested that Vimentin high expression might be significantly associated with poor survival rates of the patients. Thus, these results suggest that the CD133/CXCR4/EMT axis may be a prognostic marker and may provide novel targets for combinational therapies in the treatment of NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.