Several studies have assessed the diagnostic and prognostic values of high mobility group protein box 1 (HMGB1) expression in non-small cell lung cancer (NSCLC), but these results remain controversial. The purpose of this study was to perform a meta-analysis of the gene microarray analyses of datasets from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) to evaluate the association of HMGB1 expression with the clinicopathological and prognostic features of patients with NSCLC. Furthermore, we investigated the underlying molecular mechanisms by bioinformatics analysis. Twenty relevant articles involving 2651 patients were included in this meta-analysis; the HMGB1 expression in NSCLC tissues was significantly higher than that in the healthy non-cancer control tissues. We also found an indication by microarray analysis and meta-analysis that HMGB1 expression was associated with the cancer TNM Staging System. In terms of prognostic features, a survival analysis from KM-Plotter tool revealed that the high HMGB1 expression group exhibited poorer survival in lung adenocarcinoma (ADC) and overall NSCLC patients. The survival and disease-free analyses from TCGA datasets also showed that HMGB1 mainly affected the development of patients with ADC. Therefore, we focused on how HMGB1 affected the prognosis and development of ADC using bioinformatics analyses and detected that the mitogen-activated protein kinases (MAPK), apoptosis and cell cycle signaling pathways were the key pathways that varied during HMGB1 up-regulation in ADC. Moreover, various genes such as PLCG2, the phosphatidylinositol-4, 5-bisphosphate 3-kinase superfamily (PI3Ks), protein kinase C (PKC) and DGKZ were selected as hub genes in the gene regulatory network. Our results indicated that HMGB1 is a potential biomarker to predict progression and survival of NSCLC, especially of ADC types.
Cancer has been a major public health problem that has threatened human life worldwide throughout history. The main causes that contribute to the poor prognosis of cancer are metastasis and recurrence. Cancer stem cells are a group of tumor cells that possess self-renewal and differentiation ability, which is a vital cause of cancer metastasis and recurrence. Long non-coding RNAs refer to a class of RNAs that are longer than 200 nt and have no potential to code proteins, some of which can be specifically expressed in different tissues and different tumors. Long non-coding RNAs have great biological significance in the occurrence and progression of cancers. However, how long non-coding RNAs interact with cancer stem cells and then affect cancer metastasis and recurrence is not yet clear. Therefore, this review aims to summarize recent studies that focus on how long non-coding RNAs impact tumor occurrence and progression by affecting cancer stem cell self-renewal and differentiation in liver cancer, prostate cancer, breast cancer, and glioma.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-017-0428-9) contains supplementary material, which is available to authorized users.
Cancer is currently one of the leading causes of death worldwide and is one of the most challenging major public health problems. The main challenges faced by clinicians in the management and treatment of cancer mainly arise from difficulties in early diagnosis and the emergence of tumor chemoresistance and metastasis. The structures of chemokine receptor 9 (CCR9) and its specific ligand chemokine ligand 25 (CCL25) have been elucidated, and, interestingly, a number of studies have demonstrated that CCR9 is a potential tumor biomarker in diagnosis and therapy, as it has been found to be highly expressed in a wide range of cancers. This expression pattern suggests that CCR9 may participate in many important biological activities involved in cancer progression. Researchers have shown that CCR9 that has been activated by its specific ligand CCL25 can interact with many signaling pathways, especially those involved in tumor chemoresistance and metastasis. This review, therefore, focuses on CCR9 induction activity and summarizes what is currently known regarding its role in cancers and its potential application in tumor-targeted therapy.
Background: Lung cancer is the leading cause of cancer-related mortality globally. Discovering effective biomarkers for early diagnosis and prognosis is important to reduce the mortality rate and ensure efficient therapy for lung cancer patients. C-type lectin domain family 3 member B (CLEC3B) has been reported in various cancers, but its correlation with lung cancer remains elusive. Methods:The GEO, TCGA and Oncomine databases were analyzed to examine the expression of CLEC3B in lung cancer. The CLEC3B mRNA levels in 15 patient tissue samples were detected by real-time PCR and the CLEC3B protein levels in 34 patient tissue samples were detected by immunohistochemistry. A Chi-square test was performed to analyze the correlation of CLEC3B expression and clinicopathological factors. The diagnostic value of CLEC3B was revealed by receiver operating characteristic (ROC) curves. Univariate and multivariate Cox proportional hazards regression models and Kaplan-Meier plots were used to evaluate the prognostic value of CLEC3B in lung cancer. The TIMER database was used to evaluate the correlation of CLEC3B and immune infiltration. Gene set enrichment analysis revealed tumor-associated biological processes related to CLEC3B.Results: CLEC3B is significantly downregulated in lung cancer patients compared with nontumor controls according to database analysis and patient tissue sample detection (p < 0.001). Specifically, CLEC3B is significantly downregulated in stage IA lung cancer patients (p < 0.001) and has a high diagnostic accuracy (area under the receiver operating characteristic curve > 0.9). Moreover, low expression of CLEC3B is related to poor progression-free survival (HR = 0.60, 95% CI 0.49-0.74, p = 8.3e−07) and overall survival (HR = 0.66, 95% CI 0.58-0.75, p = 2.1e−10), indicating it as a risk factor for lung cancer. Multivariate analysis value showed that low expression of CLEC3B may be an independent risk factor for disease-free survival in lung cancer patients (HR = 0.655, 95% CI 0.430-0.996, Cox p = 0.048). In addition, we also investigated the potential role of CLEC3B in tumor-immune interactions and found that CLEC3B might be associated with the immune infiltration and immune activation of lung cancer, especially in squamous cell carcinoma.© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article' s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article'
Metastasis is the major cause of death in patients with non-small cell lung cancer (NSCLC), and epithelial-mesenchymal transition (EMT) has been observed to be one of the key regulators of metastasis in certain cancers as it confers an invasive phenotype. CD133 is a widely used cancer stem cell (CSC) marker, and CD133-positive cancer cells are thought to be tumor-initiating cells with CSC characteristics, while CXCR4, a stromal-derived-factor-1 specific chemokine receptor, is highly expressed in NSCLC tissues and participates in cancer progression by regulating cell anti-apoptosis. We previously demonstrated that CXCR4 promotes NSCLC chemoresistance by upregulating CYP1B1, however, the relationship of CD133, CXCR4 and EMT processes in NSCLC metastasis are unclear. In this study, we detected a CD133 and CXCR4 high expression in tissue specimens from 64 NSCLC patients by immunohistochemistry, of which CD133 and CXCR4 were found to be positively associated with metastatic NSCLC patients. CD133 was found to promote NSCLC tumorigenesis and mediated the expression of CXCR4. Furthermore, CD133/CXCR4 co-expression was found to be an independent prognostic factor as shown by univariate and multivariate Cox regression analysis, and was observed to regulate the expression of EMT-related molecules and transcriptional factors in NSCLC. In addition, our results showed that E-cadherin and Vimentin were simultaneously downregulated and upregulated, in CD133+CXCR4+ A549 cells, respectively. While E-cadherin was upregulated and Vimentin was downregulated in metastatic NSCLC patients. Vimentin expression was also observed to have a positive correlation with CD133/CXCR4 co-expression in NSCLC patients and survival analysis results suggested that Vimentin high expression might be significantly associated with poor survival rates of the patients. Thus, these results suggest that the CD133/CXCR4/EMT axis may be a prognostic marker and may provide novel targets for combinational therapies in the treatment of NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.