Black phosphorus is a two-dimensional material of great interest, in part because of its high carrier mobility and thickness dependent direct bandgap. However, its instability under ambient conditions limits material deposition options for device fabrication. Here we show a black phosphorus ink that can be reliably inkjet printed, enabling scalable development of optoelectronic and photonic devices. Our binder-free ink suppresses coffee ring formation through induced recirculating Marangoni flow, and supports excellent consistency (< 2% variation) and spatial uniformity (< 3.4% variation), without substrate pre-treatment. Due to rapid ink drying (< 10 s at < 60 °C), printing causes minimal oxidation. Following encapsulation, the printed black phosphorus is stable against long-term (> 30 days) oxidation. We demonstrate printed black phosphorus as a passive switch for ultrafast lasers, stable against intense irradiation, and as a visible to near-infrared photodetector with high responsivities. Our work highlights the promise of this material as a functional ink platform for printed devices.
A simple solvothermal method has been discovered to synthesize single-walled flux-closure Ni-Co magnetic alloy nanorings in high yield, which are directly fabricated in a reaction solution and able to chronically exist in solution.
We demonstrate mode-locking of a thulium-doped fiber laser operating at 1.94 μm, using a graphene-polymer based saturable absorber. The laser outputs 3.6 ps pulses, with ~0.4 nJ energy and an amplitude fluctuation ~0.5%, at 6.46 MHz. This is a simple, low-cost, stable and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics.
We fabricate a free-standing few-layer molybdenum disulfide (MoS 2 )-polymer composite by liquid phase exfoliation of chemically pristine MoS 2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS 2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.