We used cardiac magnetic resonance tissue tracking (CMR-TT) to quantitatively analyze the global, regional and layer-specific strain of isolated left ventricular noncompaction (ILVNC). Combined with late gadolinium enhancement (LGE), we initially explored the effect of focal myocardial fibrosis on myocardial strain. CMR was performed in 63 patients with ILVNC and 52 patients without ILVNC (i.e., the control group). The ILVNC group was divided into an LGE(+) group (29 patients) and an LGE(−) group (34 patients) according to the presence or absence of late gadalinum enhancement (LGE). CVI42 software was used to measure global and regional (basal, middle, apical) radial strain (RS), circumferential strain (CS), longitudinal strain (LS), subendocardial LS and subepicardial LS. The basal–apical strain gradient was defined as the apical mean strain minus the basal mean strain. We then compared differences between these strain parameters. The subendocardial-subepicardial LS gradient was defined as the maximum subendocardial LS minus the subepicardial LS. Compared with the control group, the global and regional RS, CS, LS and the subendocardial, subepicardial LS of the ILVNC group were significantly diminished (P < 0.01). Compared with the LGE(−) group, the global and regional RS, CS, LS and the subendocardial, subepicardial LS of the LGE(+) group were significantly diminished (P < 0.05). In the ILVNC group, the basal–apical CS and LS gradient, and the subendocardial-subepicardial LS gradient were significantly lower than those in the control group (P < 0.01). There were significant differences in myocardial strain between patients with and without ILVNC. ILVNC revealed a specific pattern in terms of strain change. The myocardial strain of the cardiac apex and endocardium was significantly lower than that of the cardiac base and epicardium, respectively. Myocardial strain reduction was more significant in ILVNC patients with focal myocardial fibrosis.
BackgroundIndicators for assessing myocardial viability and risk stratification in patients with coronary chronic total occlusion (CTO) are still in the research stage.PurposeTo use stress‐MRI to assess myocardial function, blood perfusion, and viability and to explore their relationship with collateral circulation.Study TypeProspective.SubjectsFifty‐one patients with CTO in at least one major artery confirmed by X‐ray coronary angiography (male: 46; age 55.2 ± 10.8 years).Field Strength/Sequence3.0T; TurboFlash, balanced steady‐state free precession cine, and phase‐sensitive inversion recovery sequences.AssessmentStress‐MRI was used to obtain qualitative and quantitative parameters of segmental myocardium. Myocardial segments supplied by CTO target vessels were grouped according to the degree of collateral circulation assessed by radiographic coronary angiography (no/mild, moderate, or good). Depending on qualitative stress perfusion assessment and late gadolinium enhancement (LGE) extent, segments were also categorized as negative, viable, or trans‐infarcted.Statistical TestsIndependent sample Student's t‐test, one‐way analysis of variance (ANOVA) test, Mann–Whitney U test, Kruskal–Wallis test, Spearman correlation coefficient (r). P < 0.05 was considered statistically significant.ResultsA total of 334 segments were supplied by CTO target vessels. The radial strain (RS), circumferential strain (CS), longitudinal strain (LS) of the negative, viable, and trans‐infarcted regions showed a significant and stepwise impairment. Myocardial blood flow at rest was positively correlated with RS, CS, and LS (r = 0.42, 0.43, 0.38, respectively). Among the different collateral circulation, there were no significant differences in RS, CS, LS, and LGE volume (P = 0.788, 0.562, 0.122, 0.170, respectively), and there were also no statistically significant differences in the proportions of negative, viable, and trans‐infarcted regions (P = 0.372).Data ConclusionMyocardial perfusion obtained by stress‐MRI combined with strain and LGE may comprehensively evaluate myocardial function and viability, and has potential to facilitate risk stratification of CTO.Evidence Level2Technical EfficacyStage 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.