Chloroplast development requires the coordinated expressions of nuclear and chloroplast genomes, and both anterograde and retrograde signals exist and work together to facilitate this coordination. We have utilized the Arabidopsis yellow variegated (var2) mutant as a tool to dissect the genetic regulatory network of chloroplast development. Here, we report the isolation of a new (to our knowledge) var2 genetic suppressor locus, SUPPRESSOR OF VARIEGATION9 (SVR9). SVR9 encodes a chloroplast-localized prokaryotic type translation initiation factor 3 (IF3). svr9-1 mutant can be fully rescued by the Escherichia coli IF3 infC, suggesting that SVR9 functions as a bona fide IF3 in the chloroplast. Genetic and molecular evidence indicate that SVR9 and its close homolog SVR9-LIKE1 (SVR9L1) are functionally interchangeable and their combined activities are essential for chloroplast development and plant survival. Interestingly, we found that SVR9 and SVR9L1 are also involved in normal leaf development. Abnormalities in leaf anatomy, cotyledon venation patterns, and leaf margin development were identified in svr9-1 and mutants that are homozygous for svr9-1 and heterozygous for svr9l1-1 (svr9-1 svr9l1-1/+). Meanwhile, as indicated by the auxin response reporter DR5:GUS, auxin homeostasis was disturbed in svr9-1, svr9-1 svr9l1-1/+, and plants treated with inhibitors of chloroplast translation. Genetic analysis established that SVR9/SVR9L1-mediated leaf margin development is dependent on CUP-SHAPED COTYLEDON2 activities and is independent of their roles in chloroplast development. Together, our findings provide direct evidence that chloroplast IF3s are essential for chloroplast development and can also regulate leaf development.
Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique var2-mediated leaf variegation offers a simple yet powerful tool for dissecting the genetic regulation of chloroplast development. Here, we report the isolation and characterization of a new var2 suppressor gene, SUPPRESSOR OF VARIEGATION8 (SVR8), which encodes a putative chloroplast ribosomal large subunit protein, L24. Mutations in SVR8 suppress var2 leaf variegation at ambient temperature and partially suppress the cold-induced chlorosis phenotype of var2. Loss of SVR8 causes unique chloroplast rRNA processing defects, particularly the 23S-4.5S dicistronic precursor. The recovery of the major abnormal processing site in svr8 23S-4.5S precursor indicate that it does not lie in the same position where SVR8/L24 binds on the ribosome. Surprisingly, we found that the loss of a chloroplast ribosomal small subunit protein, S21, results in aberrant chloroplast rRNA processing but not suppression of var2 variegation. These findings suggest that the disruption of specific aspects of chloroplast translation, rather than a general impairment in chloroplast translation, suppress var2 variegation and the existence of complex genetic interactions in chloroplast development.
Chloroplasts are semiautonomous organelles, retaining their own genomes and gene expression apparatuses but controlled by nucleus genome encoded protein factors during evolution. To analyze the genetic regulatory network of FtsH-mediated chloroplast development in Arabidopsis, a set of suppressor mutants of yellow variegated (var2) have been identified. In this research, we reported the identification of another new var2 suppressor locus, SUPPRESSOR OF VARIEGATION11 (SVR11), which encodes a putative chloroplast-localized prokaryotic type translation elongation factor EF-Tu. SVR11 is likely essential to chloroplast development and plant survival. GUS activity reveals that SVR11 is abundant in the juvenile leaf tissue, lateral roots, and root tips. Interestingly, we found that SVR11 and SVR9 together regulate leaf development, including leaf margin development and cotyledon venation patterns. These findings reinforce the notion that chloroplast translation state triggers retrograde signals regulate not only chloroplast development but also leaf development.
The complete chloroplast genome from Euonymus szechuanensis, a rare deciduous shrub of the Celastraceae endemic to China, which is classified as vulnerable on the list of Threatened species in China because species diversity decreased sharply, is determined in this study. The whole chloroplast genome sequence of Euonymus szechuanensis has been characterized by Illumina pair-end sequencing. The circular genome is 157,465 bp long, containing a large single-copy region (LSC) of 86,401 bp and a small single-copy region (SSC) of 18,472 bp, which are separated by a pair of 26,296 bp inverted repeat regions (IRs). It encodes a total of 136 genes, including 84 protein-coding genes (76 PCG species), 44 tRNA genes (30 tRNA species), and 8 ribosomal RNA genes (4 rRNA species). Most of the gene species occur as a single copy, while 19 gene species occur in double copies. The overall A þ T content of the circular genome is 62.8%, while the corresponding values of the LSC, SSC and IR regions are 65.0, 68.4 and 57.3%, respectively. Phylogenetic analysis suggested that E. szechuanensis was relatively close to Euonymus schensianus among the species analyzed. This complete chloroplast genome will provide valuable insight into conservation and restoration efforts for this rare and Threatened species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.