Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body’s antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) is a principal antioxidant enzyme that protects cells from oxidative damage by converting superoxide anion radicals to hydrogen peroxide and oxygen in mitochondria. Systematic studies have demonstrated that MnSOD plays an indispensable role in multiple diseases. This review focuses on preclinical evidence that describes the mechanisms of MnSOD in diseases accompanied with an imbalanced redox status, including fibrotic diseases, inflammation, diabetes, vascular diseases, neurodegenerative diseases, and cancer. The potential therapeutic effects of MnSOD activators and MnSOD mimetics are also discussed. Targeting this specific superoxide anion radical scavenger may be a clinically beneficial strategy, and understanding the therapeutic role of MnSOD may provide a positive insight into preventing and treating related diseases.
Ammonia tolerance is a universal characteristic among the ammonia-oxidizing bacteria (AOB); in contrast, the known species of ammonia-oxidizing archaea (AOA) have been regarded as ammonia sensitive, until the identification of the genus “Candidatus Nitrosocosmicus.” However, the mechanism of its ammonia tolerance has not been reported. In this study, the AOA species “Candidatus Nitrosocosmicus agrestis,” obtained from agricultural soil, was determined to be able to tolerate high concentrations of NH3 (>1,500 μM). In the genome of this strain, which was recovered from metagenomic data, a full set of genes for the pathways of polysaccharide metabolism, urea hydrolysis, arginine synthesis, and polyamine synthesis was identified. Among them, the genes encoding cytoplasmic carbonic anhydrase (CA) and a potential polyamine transporter (drug/metabolite exporter [DME]) were found to be unique to the genus “Ca. Nitrosocosmicus.” When “Ca. Nitrosocosmicus agrestis” was grown with high levels of ammonia, the genes that participate in CO2/HCO3− conversion, glutamate/glutamine syntheses, arginine synthesis, polyamine synthesis, and polyamine excretion were significantly upregulated, and the polyamines, including putrescine and spermidine, had significant levels of production. Based on genome analysis, gene expression quantification, and polyamine determination, we propose that the production and excretion of polyamines is probably one of the reasons for the ammonia tolerance of “Ca. Nitrosocosmicus agrestis,” and even of the genus “Ca. Nitrosocosmicus.” IMPORTANCE Ammonia tolerance of AOA is usually much lower than that of the AOB, which makes the AOB rather than AOA a predominant ammonia oxidizer in agricultural soils, contributing to global N2O emission. Recently, some AOA species from the genus “Ca. Nitrosocosmicus” were also found to have high ammonia tolerance. However, the reported mechanism for the ammonia tolerance is very rare and indeterminate for AOB and for AOA species. In this study, an ammonia-tolerant AOA strain of the species “Ca. Nitrosocosmicus agrestis” was identified and its potential mechanisms for ammonia tolerance were explored. This study will be of benefit for determining more of the ecological role of AOA in agricultural soils or other environments.
Quiescent cancer cells (QCCs) reversibly reside in G0 phase, thus allowing them to survive chemotherapy and radiotherapy, which generally target proliferating cells. Surviving QCCs may re-proliferate, and consequently result in cancer progression, recurrence, and metastasis. Therefore, understanding the key players governing QCC survival and activation is crucial for developing QCC-targeting agents. This review presents an overview of (1) the mechanisms underlying the regulation of QCC status and (2) recent advances in the development of QCC-targeting therapeutic agents and their underlying mechanisms. The development of effective therapeutic modalities that target QCCs may enable new cancer treatments to prevent cancer progression and recurrence.
Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccharides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medicinal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mushrooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti-cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mechanisms underlying the potent bioactivities of several representative mushrooms in the Kingdom Fungi against various types of tumour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.