The genus Trichoderma is comprised of many common fungi species that are distributed worldwide across many ecosystems. Trichoderma species are well-known producers of secondary metabolites with a variety of biological activities. Their potential use as biocontrol agents has been known for many years. Several reviews about metabolites from Trichoderma have been published. These reviews are based on their structural type, biological activity, or fungal origin. In this review, we summarize the secondary metabolites per Trichoderma species and elaborate on approximately 390 non-volatile compounds from 20 known species and various unidentified species.
Background: Morphological traits related to flag leaves are determinant traits influencing plant architecture and yield potential in wheat (Triticum aestivum L.). However, little is known regarding their genetic controls under drought stress. One hundred and twenty F 8 -derived recombinant inbred lines from a cross between two common wheat cultivars Longjian 19 and Q9086 were developed to identify quantitative trait loci (QTLs) and to dissect the genetic bases underlying flag leaf width, length, area, length to width ratio and basal angle under drought stress and well-watered conditions consistent over four environments. Results: A total of 55 additive and 51 pairs of epistatic QTLs were identified on all 21 chromosomes except 6D, among which additive loci were highly concentrated in a few of same or adjacent marker intervals in individual chromosomes. Two specific marker intervals of Xwmc694-Xwmc156 on chromosome 1B and Xbarc1072-Xwmc272 on chromosome 2B were co-located by additive QTLs for four tested traits. Twenty additive loci were repeatedly detected in more than two environments, suggestive of stable A-QTLs. A majority of QTLs involved significant additive and epistatic effects, as well as QTL × environment interactions (QEIs). Of these, 72.7 % of additive QEIs and 80 % of epistatic QEIs were related to drought stress with significant genetic effects decreasing phenotypic values. By contrast, additive and QEIs effects contributed more phenotypic variation than epistatic effects. Conclusions: Flag leaf morphology in wheat was predominantly controlled by additive and QEIs effects, where more QEIs effects occurred in drought stress and depressed phenotypic performances. Several QTL clusters indicated tight linkage or pleiotropy in the inheritance of these traits. Twenty stable QTLs for flag leaf morphology are potentially useful for the genetic improvement of drought tolerance in wheat through QTL pyramiding.
Summary
Sugarcane mosaic virus (SCMV) is a pathogen of worldwide importance that causes dwarf mosaic disease on maize (Zea mays). Until now, few maize genes/proteins have been shown to be involved in resistance to SCMV. In this study, we characterized the role of maize phenylalanine ammonia‐lyases (ZmPALs) in accumulation of the defence signal salicylic acid (SA) and in resistance to virus infection. SCMV infection significantly increased SA accumulation and expression of SA‐responsive pathogenesis‐related protein genes (PRs). Interestingly, exogenous SA treatment decreased SCMV accumulation and enhanced resistance. Both reverse transcription‐coupled quantitative PCR and RNA‐Seq data confirmed that expression levels of at least four ZmPAL genes were significantly up‐regulated upon SCMV infection. Knockdown of ZmPAL expression led to enhanced SCMV infection symptom severity and virus multiplication, and simultaneously resulted in decreased SA accumulation and PR gene expression. Intriguingly, application of exogenous SA to SCMV‐infected ZmPAL‐silenced maize plants decreased SCMV accumulation, showing that ZmPALs are required for SA‐mediated resistance to SCMV infection. In addition, lignin measurements and metabolomic analysis showed that ZmPALs are also involved in SCMV‐induced lignin accumulation and synthesis of other secondary metabolites via the phenylpropanoid pathway. In summary, our results indicate that ZmPALs are required for SA accumulation in maize and are involved in resistance to virus infection by limiting virus accumulation and moderating symptom severity.
Traditional Chinese herbal medicines (TCHMs) have been used to treat diseases for thousands of years because of high therapeutic performance and low toxicity. To mine for new natural sources of antioxidants, 93 TCHMs were screened for activity, based on classical antioxidant capacity assays. Substantial differences in antioxidant capacity were coupled with phenolic and flavonoid content for each of the examined species. Species that exhibited both high antioxidant capacity and specialized-phytochemical content included: Angelica dahurica, Atractylodes macrocephala, Paeonia lactiflora, Paeonia suffruticosa and Perilla frutescens. These species have been identified as promising sources for natural antioxidants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.