In this paper, we propose a model where two strains compete with each other at the expense of common susceptible individuals on heterogeneous networks by using pair-wise approximation closed by the probability-generating function (PGF). All of the strains obey the susceptible-infected-recovered (SIR) mechanism. From a special perspective, we first study the dynamical behaviour of an SIR model closed by the PGF, and obtain the basic reproduction number via two methods. Then we build a model to study the spreading dynamics of competing viruses and discuss the conditions for the local stability of equilibria, which is different from the condition obtained by using the heterogeneous mean-field approach. Finally, we perform numerical simulations on Barabási-Albert networks to complement our theoretical research, and show some dynamical properties of the model with competing viruses.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'.
We introduce three modified SIS models on scale-free networks that take into account variable population size, nonlinear infectivity, adaptive weights, behavior inertia and time delay, so as to better characterize the actual spread of epidemics. We develop new mathematical methods and techniques to study the dynamics of the models, including the basic reproduction number, and the global asymptotic stability of the disease-free and endemic equilibria. We show the disease-free equilibrium cannot undergo a Hopf bifurcation. We further analyze the effects of local information of diseases and various immunization schemes on epidemic dynamics. We also perform some stochastic network simulations which yield quantitative agreement with the deterministic mean-field approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.