Ultraviolet (UV) photodetector has attracted extensive interests due to its wide-ranging applications from defense technology to optical communications. The use of wide bandgap metal oxide semiconductor materials is of great interest in the development of UV photodetector due to their unique electronic and optical properties. In this work, deep UV photodetector based on NiO/β-Ga 2 O 3 heterojunction was developed and investigated. The β-Ga 2 O 3 layer was prepared by magnetron sputtering and exhibited selective orientation along the family of (2 01) crystal plane after annealing. The photodetector demonstrated good performance with a high responsivity (R) of 27.43 AW −1 under a 245-nm illumination (27 μWcm −2) and the maximum detectivity (D*) of 3.14 × 10 12 cmHz 1/2 W −1 , which was attributed to the p-NiO/n-β-Ga 2 O 3 heterojunction.
The ultraviolet (UV) photodetector has found many applications, ranging from optical communication to environmental monitoring. There has been much research interest in the development of metal oxide-based UV photodetectors. In this work, a nano-interlayer was introduced in a metal oxide-based heterojunction UV photodetector to enhance the rectification characteristics and therefore the device performance. The device, which consists of nickel oxide (NiO) and zinc oxide (ZnO) sandwiching an ultrathin dielectric layer of titanium dioxide (TiO2), was prepared by radio frequency magnetron sputtering (RFMS). After annealing, the NiO/TiO2/ZnO UV photodetector exhibited a rectification ratio of 104 under UV irradiation of 365 nm at zero bias. The device also demonstrated a high responsivity of 291 A/W and a detectivity of 6.9 × 1011 Jones at +2 V bias. Such a device structure provides a promising future for metal oxide-based heterojunction UV photodetectors in a wide range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.