With the rapid development of Internet technology, network attacks have become more frequent and complex, and intrusion detection has also played an increasingly important role in network security. Intrusion detection is real-time and proactive, and it is an indispensable technology under the diversified trend of network security issues. In terms of network security, neural networks have the characteristics of self-learning, self-adaptation, and parallel computing, which are very important in intrusion detection. This paper combines back propagation neural network (BPNN) and elite clone artificial bee colony (ECABC) to propose a new ECABC-BPNN, which updates and optimizes the settings of traditional BPNN weights and thresholds. Then, apply ECABC-BPNN to network intrusion detection. Use the attack data samples of KDD CUP 99 and water pipe for attack classification experiments using GA-BPNN, PSO-BPNN, and ECABC-BPNN. The results show that the ECABC-BPNN proposed in this paper has an accuracy rate of 98.08% on KDD 99 and 99.76% on water pipe data. ECABC-BPNN effectively improves the accuracy of network intrusion classification and reduces classification errors. In addition, the time complexity of using ECABC-BPNN to classify network attacks is relatively low. Therefore, ECABC-BPNN has superior performance in network intrusion detection and classification.
Intrusion Detection System (IDS) is an important part of ensuring network security. When the system faces network attacks, it can identify the source of threats in a timely and accurate manner and adjust strategies to prevent hackers from intruding. Efficient IDS can identify external threats well, but traditional IDS has poor performance and low recognition accuracy. To improve the detection rate and accuracy of IDS, this paper proposes a novel ACGA-BPNN method based on adaptive clonal genetic algorithm (ACGA) and backpropagation neural network (BPNN). ACGA-BPNN is simulated on the KDD-CUP’99 and UNSW-NB15 data sets. The simulation results indicate that, in contrast to the methods based on simulated annealing (SA) and genetic algorithm (GA), the detection rate and accuracy of ACGA-BPNN are much higher than of GA-BPNN and SA-BPNN. In the classification results of KDD-CUP’99, the classification accuracy of ACGA-BPNN is 11% higher than GA-BPNN and 24.2% higher than SA-BPNN, and F-score reaches 99.0%. In addition, ACGA-BPNN has good global searchability and its convergence speed is higher than that of GA-BPNN and SA-BPNN. Furthermore, ACGA-BPNN significantly improves the overall detection performance of IDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.