We lay out a comprehensive physics case for a future high-energy muon collider, exploring a range of collision energies (from 1 to 100 TeV) and luminosities. We highlight the advantages of such a collider over proposed alternatives. We show how one can leverage both the point-like nature of the muons themselves as well as the cloud of electroweak radiation that surrounds the beam to blur the dichotomy between energy and precision in the search for new physics. The physics case is buttressed by a range of studies with applications to electroweak symmetry breaking, dark matter, and the naturalness of the weak scale. Furthermore, we make sharp connections with complementary experiments that are probing new physics effects using electric dipole moments, flavor violation, and gravitational waves. An extensive appendix provides cross section predictions as a function of the center-of-mass energy for many canonical simplified models.
Stem cell therapy may provide a therapeutic method for the replacement and regeneration of damaged neurons of the central nervous system. However, neural stem cells (NSCs) and neural precursor cells (NPCs) are especially vulnerable after transplantation due to a lack of sufficient growth factors at the transplant site. Electrical stimulation (ES) has recently been found to participate in the regulation of cell proliferation, growth, differentiation, and migration, but its underlying anti-apoptotic effects remain unclear. This study investigated the protective effects of biphasic electrical stimulation (BES) on olfactory bulb NPCs against growth factor-deprived apoptosis, examining the survival and apoptotic features of the cells. Differentiation was assessed by neuronal and glial markers. Brain-derived neurotrophic factor-phosphatidylinositol 3'-kinase (BDNF)-PI3K/Akt pathway activation was determined by enzyme-linked immunosorbent assay and Western blot. The chemical inhibitor wortmannin was used to inhibit the PI3K/Akt pathway. BES exerts a protective effect against growth factor-deprived apoptosis in the NPCs. BES enhanced cell survival and decreased the apoptotic/necrotic rate. Expression of phosphorylated Akt and BDNF secretion increased with BES for 12 h. Furthermore, the protective effects of BES were inhibited by blocking PI3K/AKT signalling. These results suggest that BES prevents growth factor-deprived apoptosis through the BDNF-PI3K/Akt signalling. This work strengthens the opinion that BES may be used as an auxiliary strategy for improving cell survival and preventing cell apoptosis in stem cell-based transplantation therapy.
PCV3 capsid protein (Cap) is an important antigen for diagnosis and vaccine development. To achieve high-level expression of recombinant PCV3 Cap in Escherichia coli (E. coli), the gene of wild-type entire Cap (wt-eCap) was amplified from clinical samples, and three optimized entire Cap (opti-eCap) and one optimized Cap deleted nuclear location signal (NLS) (opti-dCap) gene fragments encoding the same amino acid sequence with wt-eCap were synthesized based on the codon bias of E. coli. Those gene fragments were inserted into the pET30a expression vector. One recombinant strain with the highest expressed soluble eCap from four entire Cap (one wt-eCap and three opti-eCap) and one recombinant strain expressed opti-dCap were selected for further purification. The purified eCap and dCap were identified by transmission electron microscopy (TEM), a large number of round hollow particles with a diameter of 10 nm virus-like particles (VLPs) were observed in eCap, whereas irregular aggregation of proteins observed in dCap. After formation the VLPs were applied as a coating antigen to establish an indirect ELISA (I-ELISA) for detection of PCV3-specific antibody in swine serum. 373 clinical swine serum samples from China collected in 2019 were tested utilizing the VLP-based I-ELISA method under optimized conditions. To the best of our knowledge, this is the first report of self-assembly into VLPs of PCV3 recombinant Cap. Our results demonstrated that the VLP-based I-ELISA will be a valuable tool for detecting the presence of PCV3 antibodies in serum samples and will facilitate screening of large numbers of swine serum for clinical purposes.
Recent studies have shown accelerated PRV cross-species spillover and that PRV poses a potential threat to humans. PRV infection in humans always manifests as a high fever, tonic-clonic seizures, and encephalitis.
A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a 'dip-in and light-irradiation' green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.