This paper solves control problems of agents achieving consensus motions in presence of nonuniform time delays by obtaining the maximal tolerable delay value. Two types of consensus motions are considered: the rectilinear motion and the rotational motion. Unlike former results, this paper has remarkably reduced conservativeness of the consensus conditions provided in such form: for each system, if all the nonuniform time delays are bounded by the maximal tolerable delay value which is referred to as “delay margin,” the system will achieve consensus motion; otherwise, if all the delays exceed the delay margin, the system will be unstable. When discussing the system which is intended to achieve rotational consensus motion, an expanded system whose state variables are real numbers (those of the original system are complex numbers) is introduced, and corresponding consensus condition is given also in the form of delay margin. Numerical examples are provided to illustrate the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.