Cell transplantation is an effective strategy to improve the repair effect of nerve guide conduits (NGCs). However, problems such as low loading efficiency and cell anoikis undermine the outcomes. Microcarriers are efficient 3D cell culture scaffolds, which can also prevent cell anoikis by providing substrate for adhesion during transplantation. Here, we demonstrate for the first time microcarrier-based cell transplantation in peripheral nerve repair. We first prepared macroporous chitosan microcarriers (CSMCs) by the emulsion-phase separation method, and then decorated the CSMCs with polylysine (pl-CSMCs) to improve cell affinity. We then loaded the pl-CSMCs with adipose-derived stem cells (ADSCs) and injected them into electrospun polycaprolactone/chitosan NGCs to repair rat sciatic nerve defects. The ADSCs-laden pl-CSMCs effectively improved nerve regeneration as demonstrated by evaluation of histology, motor function recovery, electrophysiology, and gastrocnemius recovery. With efficient cell transplantation, convenient operation, and the multiple merits of ADSCs, the ADSCs-laden pl-CSMCs hold good potential in peripheral nerve repair.
Background: Huangqi Guizhi Wuwu Decoction (HGWD) is a traditional and effective Chinese medicine compound decoction for the treatment of rheumatoid arthritis (RA). However, there is few research on the treatment of rheumatoid cardiopulmonary complications. The present study was to study whether HGWD can alleviate the pathological changes caused by rheumatoid arthritis and cardiopulmonary complications.Methods: Five 3-month-old TNF-Tg mice were treated with HGWD (9.1 g/kg) once a day or the same dose of normal saline lasted for 8 weeks, and wild-type littermates of the same age were used as a negative control, and methotrexate (MTX) was intraperitoneally administered as a positive control. After the treatment, pathological staining was performed on the mouse ankle joints, heart, and lungs.Result: It was found that HGWD reduced the inflammation of the ankle joint synovium in TNF-Tg mice, and reduced myocardial hypertrophy, inflammatory infiltration and fibrosis of heart, as well as lung inflammation and fibrosis. Immunohistochemical staining with anti-TNF-α antibody showed that HGWD reduced the expression of TNF-α in the heart of TNF-Tg mice.Conclusion: In conclusion, HGWD alleviates joint inflammation in TNF-Tg mice and reduces the pathological changes of the heart and lungs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.