Graphitic carbon materials (GCs) are attractive as anodes for the industrialization of potassium ion batteries (PIBs). However, the poor cycle and rate performance of GC‐based anodes hinder the development of PIBs. In this study, inspired by the nervous system, neuromorphic GCs (NGCs) are designed to use as potassium anodes with high cycling stability and excellent rate performance. The inherent neuromorphic nature of NGCs enables fast signal transmission via multiwalled carbon nanotubes (MWCNTs), which serve as efficient pathways for electronic transmission. Meanwhile, the low‐stress properties of hollow carbon spheres effectively support the cycling stability of PIBs. As a result, NGC‐based potassium anodes achieved an unprecedented cycle life over 18 months (2400 cycles) with a reversible capacity of up to 225 mAh g−1 at a current density of 100 mA g−1. Moreover, the novel anode exhibits exceptional rate performance (73.6 mAh g−1 at 1 A g−1). The research presented here offers a practical and straightforward method for potassium's long‐term and high‐rate storage and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.