A microfluidic device was designed and fabricated to capture single microparticles and cells by using hydrodynamic force and selectively release the microparticles and cells of interest via negative dielectrophoresis by activating selected individual microelectrodes. The trap microstructure was optimized based on numerical simulation of the electric field as well as the flow field. The capture and selective release functions of the device were verified by multi-types microparticles with different diameters and K562 cells. The capture efficiencies/release efficiencies were 95.55% ± 0.43%/96.41% ± 1.08% and 91.34% ± 0.01%/93.67% ± 0.36% for microparticles and cells, respectively. By including more traps and microelectrodes, the device can achieve high throughput and realize the visual separation of microparticles/cells of interest in a large number of particle/cell groups.
Cell electroporation is an important cell manipulation technology to artificially transfer specific extracellular components into cells. However, the consistency of substance transport during the electroporation process is still an issue due to the wide size distribution of the natural cells. In this study, a cell electroporation microfluidic chip based on a microtrap array is proposed. The microtrap structure was optimized for single-cell capture and electric field focusing. The effects of the cell size on the cell electroporation in the microchip were investigated through simulation and experiment methods using the giant unilamellar vesicle as the simplified cell model, and a numerical model of a uniform electric field was used as a comparison. Compared with the uniform electric field, a lower threshold electric field is required to induce electroporation and produces a higher transmembrane voltage on the cell under a specific electric field in the microchip, showing an improvement in cell viability and electroporation efficiency. The larger perforated area produced on the cells in the microchip under a specific electric field allows a higher substance transfer efficiency, and the electroporation results are less affected by the cell size, which is beneficial for improving substance transfer consistency. Furthermore, the relative perforation area increases with the decrease of the cell diameter in the microchip, which is exactly opposite to that in a uniform electric field. By manipulating the electric field applied to the microtrap individually, a consistent proportion of substance transfer during electroporation of cells with different sizes can be achieved.
Electroporation shows great potential in biology and biomedical applications. However, there is still a lack of reliable protocol for cell electroporation to achieve a high perforation efficiency due to the unclear influence mechanism of various factors, especially the salt ions in buffer solution. The tiny membrane structure of a cell and the electroporation scale make it difficult to monitor the electroporation process. In this study, we used both molecular dynamics (MD) simulation and experimental methods to explore the influence of salt ions on the electroporation process. Giant unilamellar vesicles (GUVs) were constructed as the model, and sodium chloride (NaCl) was selected as the representative salt ion in this study. The results show that the electroporation process follows lag-burst kinetics, where the lag period first appears after applying the electric field, followed by a rapid pore expansion. For the first time, we find that the salt ion plays opposite roles in different stages of the electroporation process. The accumulation of salt ions near the membrane surface provides an extra potential to promote the pore initiation, while the charge screening effect of the ions within the pore increases the line tension of the pore to induce the instability of the pore and lead to the closure. The GUV electroporation experiments obtain qualitatively consistent results with MD simulations. This work can provide guidance for the selection of parameters for cell electroporation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.