Traditional supervised learning requires the groundtruth labels for the training data, which can be difficult to collect in many cases. In contrast, crowdsourcing learning collects noisy annotations from multiple non-expert workers and infers the latent true labels through some aggregation approach. In this paper, we notice that existing deep crowdsourcing work does not sufficiently model worker correlations, which is, however, shown to be helpful for learning by previous non-deep learning approaches. We propose a deep generative crowdsourcing learning approach to incorporate the strengths of Deep Neural Networks (DNNs) and exploit worker correlations. The model comprises a DNN classifier as a prior and an annotation generation process. A mixture model of workers' capabilities within each class is introduced into the annotation generation process for worker correlation modeling. For adaptive trade-off between model complexity and data fitting, we implement fully Bayesian inference. Based on the naturalgradient stochastic variational inference techniques developed for the Structured Variational AutoEncoder (SVAE), we combine variational message passing for conjugate parameters and stochastic gradient descent for DNN parameters into a unified framework for efficient endto-end optimization. Experimental results on 22 real crowdsourcing datasets demonstrate the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.