The default mode network (DMN) is a workspace for convergence of internal and external information. The frontal parietal network (FPN) is indispensable to executive functioning. Yet, how they interplay to support cognitive development remains elusive. Using longitudinal developmental fMRI with an n-back paradigm, we show a heterogeneity of maturational changes in multivoxel activity and network connectivity among DMN and FPN nodes in 528 children and 103 young adults. Compared with adults, children exhibited prominent longitudinal improvement but still inferior behavioral performance, which paired with less pronounced DMN deactivation and weaker FPN activation in children, but stronger DMN coupling with FPN regions. Children’s DMN reached an adult-like level earlier than FPN at both multivoxel activity pattern and intranetwork connectivity levels. Intrinsic DMN-FPN internetwork coupling in children mediated the relationship between age and working memory-related functional coupling of these networks, with posterior cingulate cortex (PCC)-dorsolateral prefrontal cortex (DLPFC) coupling emerging as most prominent pathway. Coupling of PCC-DLPFC may further work together with task-invoked activity in PCC to account for longitudinal improvement in behavioral performance in children. Our findings suggest that the DMN provides a scaffolding effect in support of an immature FPN that is critical for the development of executive functions in children.
Human functional brain networks are dynamically organized to enable cognitive and behavioral flexibility to meet ever-changing environmental demands. Frontal-parietal network (FPN) and default mode network (DMN) are recognized to play an essential role in executive functions such as working memory. However, little is known about the developmental differences in the brain-state dynamics of these two networks involved in working memory from childhood to adulthood. Here, we implemented Bayesian switching dynamical systems approach to identify brain states of the FPN and DMN during working memory in 69 school-age children and 51 adults. We identified five brain states with rapid transitions, which are characterized by dynamic configurations among FPN and DMN nodes with active and inactive engagement in different task demands. Compared with adults, children exhibited less frequent brain states with the highest activity in FPN nodes dominant to high demand, and its occupancy rate increased with age. Children preferred to attain inactive brain states with low activity in both FPN and DMN nodes. Moreover, children exhibited lower transition probability from low-to-high demand states and such a transition was positively correlated with working memory performance. Notably, higher transition probability from low-to-high demand states was associated with a stronger structural connectivity across FPN and DMN, but with weaker structure–function coupling of these two networks. These findings extend our understanding of how FPN and DMN nodes are dynamically organized into a set of transient brain states to support moment-to-moment information updating during working memory and suggest immature organization of these functional brain networks in childhood, which is constrained by the structural connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.