Synthetic Aperture Radar (SAR), as one of the important and significant methods for obtaining target characteristics in the field of remote sensing, has been applied to many fields including intelligence search, topographic surveying, mapping, and geological survey. In SAR field, the SAR automatic target recognition (SAR ATR) is a significant issue. However, on the other hand, it also has high application value. The development of deep learning has enabled it to be applied to SAR ATR. Some researchers point out that existing convolutional neural network (CNN) paid more attention to texture information, which is often not as good as shape information. Wherefore, this study designs the enhanced-shape CNN, which enhances the target shape at the input. Further, it uses an improved attention module, so that the network can highlight target shape in SAR images. Aiming at the problem of the small scale of the existing SAR data set, a small sample experiment is conducted. Enhanced-shape CNN achieved a recognition rate of 99.29% when trained on the full training set, while it is 89.93% on the one-eighth training data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.