Seasonal dynamics in symbiotic microbiomes have been investigated in a number of vertebrates and are mainly caused by changes in the diet (in the gut microbiome) or the living environment (in the skin microbiome). Most amphibian microbiome studies focus on the skin, whereas internal microbiome structure and dynamics are often overlooked. The present study investigated the seasonal dynamics in three types of symbiotic microbiomes (the skin, stomach, and gut) across four wild frog species, belonging to different families, in May and October. The frogs harbored more water source microbes in May than in October. On the contrary, the frogs harbored more soil source microbes in October than in May. The frog species investigated tend to live in a water environment in May to maintain body surface humidity at high environmental temperatures and to breed. In October, these four species prefer to live on the land, as the environmental temperature decreases, to prepare for hibernation in caves or under stones. Thus, seasonal changes in the wild amphibian symbiotic microbiome may be caused by the difference in microbe transmission from their living environment due to specific behaviors. This study demonstrated that the behavior and living environment of wild amphibians shape their symbiotic microbiome externally (on the skin) and internally (in the stomach and gut). We revealed the potential association between specific behaviors in poikilothermic animals and host symbiotic microbiomes. IMPORTANCE Understanding the interactions between host behavior and microbiome dynamics remains an outstanding priority in the field of microbial ecology. Here, we provide the reader with a simple example of how the behavior and living environment of wild amphibians shape their symbiotic microbiome externally (on the skin) and internally (in the stomach and gut).
Glioma-associated oncogene 1 (Gli1) is a critical transcriptional factor of Sonic hedgehog pathway which has been proved to participate in the initiation and progression of tumor in mammalians. However, its clinical value in breast cancer remains unknown. Thus, a meta-analysis was performed to clarify the association of Gli1 over-expression, clinic-pathological characteristics, molecular subtypes and prognosis in breast cancer. According to included criteria, 13 eligible studies containing 2816 patients all around the world were selected in this study. Our results indicated no significant association of Gli1 expression and histological grade (RR = 1.20, 95% CI: [0.98, 1.47]), T stage (RR = 1.05, 95% CI: [0.87, 1.27]), clinical stage (RR = 1.04, 95% CI: [0.93, 1.18]) and lymph node metastasis (RR = 1.12, 95% CI: [0.92, 1.37]). In addition, pooled RR showed no correlation of Gli1 expression and progesterone receptor (PR) (RR = 0.92, 95% CI: [0.70, 1.21]), estrogen receptor (ER) (RR = 1.03, 95% CI: [0.74, 1.42]), human epidermal growth factor receptor 2 (HER-2) (RR = 1.12, 95% CI: [0.90, 1.39]). Nonetheless, up-regulated Gli1 expression predicts shorter disease-free survival (DFS) (HR = 1.38, 95% CI: [1.05, 1.81]), 3-year survival (HR = 1.74, 95% CI: [1.28, 2.36]), 5-year survival (HR = 2.04, 95% CI: [1.62, 2.57]) and overall survival (OS) (HR = 2.05, 95% CI: [1.60, 2.64]). In conclusion, over-expression of Gli1 tends to progressive stages and is related to unfavorable prognosis of breast cancer, which may become a potential prognosis indicator and therapy target in breast cancer.
BackgroundN‐cadherin is an important molecular in epithelial‐mesenchymal transition (EMT) and has been reported to be associated with aggressive behaviours of tumours. However, prognostic value of N‐cadherin in solid malignancies remains controversially.Materials and MethodsThe Pubmed/MELINE and EMBASE databases were used for a comprehensive literature searching. Pooled risk ratio (RR) and hazard ratio (HR) with their corresponding 95% confidence intervals (CIs) were employed to quantify the prognostic role.ResultsInvolving 36 studies with 5705 patients were performed to investigate relationships between N‐cadherin upregulation and clinicopathological features, survival. Results suggested upregulated N‐cadherin was associated with lymph node metastasis (RR = 1.16, 95% CI [1.00, 1.35]), higher histological grade (RR = 1.36, 95%CI [1.14, 1.62]), angiolymphatic invasion (RR = 1.19, 95% CI [1.06, 1.34]) and advanced clinical stage (RR = 1.32, 95% CI [1.06, 1.64]), while upregulated N‐cadherin was apt to be associated with distant metastasis (RR = 1.43, 95% CI [0.99, 2.05]). Moreover, N‐cadherin was correlated with poor prognosis of 3‐year survival (HR = 1.78, 95% CI [1.51, 2.10]), 5‐year survival (HR = 1.57, 95% CI [1.17, 2.10]) and overall survival (OS) (HR = 1.32, 95% CI [1.20, 1.44]). Subgroup analyses according to cancer types were also conducted for applying these conclusions to some tumours more properly. No publication bias was found except subgroup analysis of distant metastasis (P = .652 for Begg's test and 0.023 for Egger's test).ConclusionsTaken together, upregulation of N‐cadherin is associated with more aggressive behaviours of epithelial‐derived solid malignancies and can be regarded as a predictor of poor survival.
ObjectivesPrevious studies have reported that a few inflammatory cytokines have associations with systemic lupus erythematosus (SLE)—for example, IL-6, IL-17, and macrophage inflammatory protein (MIP). This Mendelian randomization was conducted to further assess the causal correlations between 41 inflammatory cytokines and SLE.MethodsThe two-sample Mendelian randomization utilized genetic variances of SLE from a large publicly available genome-wide association study (GWAS) (7,219 cases and 15,991 controls of European ancestry) and inflammatory cytokines from a GWAS summary containing 8,293 healthy participants. Causalities of exposures and outcomes were explored mainly using inverse variance weighted method. In addition, multiple sensitivity analyses including MR-Egger, weighted median, simple mode, weighted mode, and MR-PRESSO were simultaneously applied to strengthen the final results.ResultsThe results indicated that cutaneous T cell-attracting chemokine (CTACK) and IL-17 may be suggestively associated with the risk of SLE (odds ratio, OR: 1.21, 95%CI: 1.04–1.41, p = 0.015; OR: 1.37, 95%CI: 1.03–1.82, p = 0.029). In addition, cytokines including beta nerve growth factor, basic fibroblast growth factor, IL-4, IL-6, interferon gamma-induced protein 10, monokine induced by interferon-gamma, MIP1b, stromal cell-derived factor-1 alpha, and tumor necrosis factor-alpha are suggested to be the consequences of SLE disease (Beta: 0.035, p = 0.014; Beta: 0.021, p = 0.032; Beta: 0.024, p = 0.013; Beta: 0.019, p = 0.042; Beta: 0.040, p = 0.005; Beta: 0.046, p = 0.001; Beta: 0.021, p = 0.029; Beta: 0.019, p = 0.045; Beta: 0.029, p = 0.048).ConclusionThis study suggested that CTACK and IL-17 are probably the factors correlated with SLE etiology, while a couple of inflammatory cytokines are more likely to be involved in SLE development downstream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.