Motivation
Many important cellular processes involve physical interactions of proteins. Therefore, determining protein quaternary structures provide critical insights for understanding molecular mechanisms of functions of the complexes. To complement experimental methods, many computational methods have been developed to predict structures of protein complexes. One of the challenges in computational protein complex structure prediction is to identify near-native models from a large pool of generated models.
Results
We developed a convolutional deep neural network-based approach named DOcking decoy selection with Voxel-based deep neural nEtwork (DOVE) for evaluating protein docking models. To evaluate a protein docking model, DOVE scans the protein–protein interface of the model with a 3D voxel and considers atomic interaction types and their energetic contributions as input features applied to the neural network. The deep learning models were trained and validated on docking models available in the ZDock and DockGround databases. Among the different combinations of features tested, almost all outperformed existing scoring functions.
Availability and implementation
Codes available at http://github.com/kiharalab/DOVE, http://kiharalab.org/dove/.
Supplementary information
Supplementary data are available at Bioinformatics online.
BackgroundMicropeptides are small proteins with length < = 100 amino acids. Short open reading frames that could produces micropeptides were traditionally ignored due to technical difficulties, as few small peptides had been experimentally confirmed. In the past decade, a growing number of micropeptides have been shown to play significant roles in vital biological activities. Despite the increased amount of data, we still lack bioinformatics tools for specifically identifying micropeptides from DNA sequences. Indeed, most existing tools for classifying coding and noncoding ORFs were built on datasets in which “normal-sized” proteins were considered to be positives and short ORFs were generally considered to be noncoding. Since the functional and biophysical constraints on small peptides are likely to be different from those on “normal” proteins, methods for predicting short translated ORFs must be trained independently from those for longer proteins.ResultsIn this study, we have developed MiPepid, a machine-learning tool specifically for the identification of micropeptides. We trained MiPepid using carefully cleaned data from existing databases and used logistic regression with 4-mer features. With only the sequence information of an ORF, MiPepid is able to predict whether it encodes a micropeptide with 96% accuracy on a blind dataset of high-confidence micropeptides, and to correctly classify newly discovered micropeptides not included in either the training or the blind test data. Compared with state-of-the-art coding potential prediction methods, MiPepid performs exceptionally well, as other methods incorrectly classify most bona fide micropeptides as noncoding. MiPepid is alignment-free and runs sufficiently fast for genome-scale analyses. It is easy to use and is available at https://github.com/MindAI/MiPepid.ConclusionsMiPepid was developed to specifically predict micropeptides, a category of proteins with increasing significance, from DNA sequences. It shows evident advantages over existing coding potential prediction methods on micropeptide identification. It is ready to use and runs fast.Electronic supplementary materialThe online version of this article (10.1186/s12859-019-3033-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.