Graph Neural Networks (GNNs) have become powerful tools in modeling graph-structured data in recommender systems. However, real-life recommendation scenarios usually involve heterogeneous relationships (e.g., social-aware user influence, knowledge-aware item dependency) which contains fruitful information to enhance the user preference learning. In this paper, we study the problem of heterogeneous graph-enhanced relational learning for recommendation. Recently, contrastive self-supervised learning has become successful in recommendation. In light of this, we propose a Heterogeneous Graph Contrastive Learning (HGCL), which is able to incorporate heterogeneous relational semantics into the user-item interaction modeling with contrastive learning-enhanced knowledge transfer across different views. However, the influence of heterogeneous side information on interactions may vary by users and items. To move this idea forward, we enhance our heterogeneous graph contrastive learning with meta networks to allow the personalized knowledge transformer with adaptive contrastive augmentation. The experimental results on three real-world datasets demonstrate the superiority of HGCL over state-of-the-art recommendation methods. Through ablation study, key components in HGCL method are validated to benefit the recommendation performance improvement. The source code of the model implementation is available at the link https://github.com/HKUDS/HGCL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.