Many bacteria use N-acyl homoserine lactone (AHL) signals to coordinate the behavior of individual cells in a local population. The successful infection of eukaryotic hosts by bacteria seems to depend particularly on such AHL-mediated ''quorum-sensing'' regulation. We have used proteome analysis to show that a eukaryotic host, the model legume Medicago truncatula, is able to detect nanomolar to micromolar concentrations of bacterial AHLs from both symbiotic (Sinorhizobium meliloti) and pathogenic (Pseudomonas aeruginosa) bacteria, and that it responds in a global manner by significant changes in the accumulation of over 150 proteins, 99 of which have been identified by peptide mass fingerprinting. The accumulation of specific proteins and isoforms depended on AHL structure, concentration, and time of exposure. AHLs were also found to induce tissue-specific activation of -glucuronidase (GUS) reporter fusions to an auxin-responsive and three chalcone synthase promoters, consistent with AHL-induced changes in the accumulation of auxin-responsive and flavonoid synthesis proteins. In addition, exposure to AHLs was found to induce changes in the secretion of compounds by the plants that mimic quorum-sensing signals and thus have the potential to disrupt quorum sensing in associated bacteria. Our results indicate that eukaryotes have an extensive range of functional responses to AHLs that may play important roles in the beneficial or pathogenic outcomes of eukaryote-prokaryote interactions.
Earlier work showed that higher plants produce unidentified compounds that specifically stimulate or inhibit quorum sensing (QS) regulated responses in bacteria. The ability of plants to produce substances that affect QS regulation may provide plants with important tools to manipulate gene expression and behavior in the bacteria they encounter. In order to examine the kinds of QS active substances produced by the model legume M. truncatula, young seedlings and seedling exudates were systematically extracted with various organic solvents, and the extracts were fractionated by reverse phase C18 high-performance liquid chromatography. M. truncatula appears to produce at least 15 to 20 separable substances capable of specifically stimulating or inhibiting responses in QS reporter bacteria, primarily substances that affect QS regulation dependent on N-acyl homoserine lactone (AHL) signals. The secretion of AHL QS mimic activities by germinating seeds and seedlings was found to change substantially with developmental age. The secretion of some mimic activities may be dependent upon prior exposure of the plants to bacteria.
The unicellular soil-freshwater alga Chlamydomonas reinhardtii was found to secrete substances that mimic the activity of the N-acyl-l-homoserine lactone (AHL) signal molecules used by many bacteria for quorum sensing regulation of gene expression. More than a dozen chemically separable but unidentified substances capable of specifically stimulating the LasR or CepR but not the LuxR, AhyR, or CviR AHL bacterial quorum sensing reporter strains were detected in ethyl acetate extracts of C. reinhardtii culture filtrates. Colonies of C. reinhardtii and Chlorella spp. stimulated quorum sensing-dependent luminescence in Vibrio harveyi, indicating that these algae may produce compounds that affect the AI-2 furanosyl borate diester-mediated quorum sensing system of Vibrio spp. Treatment of the soil bacterium Sinorhizobium meliloti with a partially purified LasR mimic from C. reinhardtii affected the accumulation of 16 of the 25 proteins that were altered in response to the bacterium's own AHL signals, providing evidence that the algal mimic affected quorum sensing-regulated functions in this wild-type bacterium. Peptide mass fingerprinting identified 32 proteins affected by the bacterium's AHLs or the purified algal mimic, including GroEL chaperonins, the nitrogen regulatory protein PII, and a GTP-binding protein. The algal mimic was able to cancel the stimulatory effects of bacterial AHLs on the accumulation of seven of these proteins, providing evidence that the secretion of AHL mimics by the alga could be effective in disruption of quorum sensing in naturally encountered bacteria.
Many bacteria use quorum sensing (QS) as an intercellular signaling mechanism to regulate gene expression in local populations. Plant and algal hosts, in turn, secrete compounds that mimic bacterial QS signals, allowing these hosts to manipulate QS-regulated gene expression in bacteria. Lumichrome, a derivative of the vitamin riboflavin, was purified and chemically identified from culture filtrates of the alga Chlamydomonas as a QS signal-mimic compound capable of stimulating the Pseudomonas aeruginosa LasR QS receptor. LasR normally recognizes the N-acyl homoserine lactone (AHL) signal, N-3-oxo-dodecanoyl homoserine lactone (3-oxo-C12-HSL). Authentic lumichrome and riboflavin stimulated the LasR receptor in bioassays, and lumichrome activated LasR in gel shift experiments. Amino acid substitutions in LasR residues required for AHL binding altered responses to both AHLs and lumichrome/riboflavin. These results and docking studies indicate that the AHL binding pocket of LasR recognizes both AHLs and the structurally dissimilar lumichrome/riboflavin. Bacteria, plants and algae commonly secrete riboflavin and/or lumichrome, raising the possibility that these compounds could serve as either QS signals or as interkingdom signal-mimics capable of manipulating QS in bacteria with a LasR-like receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.