Background and aim Some research has suggested that miRNA-10a (miR-10a-5p) had an inhibitory function in proliferation and invasion of cancers. Whereas the role of miR-10a-5p in melanoma has not been fully explored. This study aims to confirm LIN28B as the targeted gene of miR-10a-5p which was explored in melanoma cells. In addition, upstream regulatory molecule of miR-10a-5p was also investigated in melanoma cells. Methods Real-time Quantitative polymerase chain reaction (RT-qPCR) was adopted to analyze miR-10a-5p expression level in melanoma and the normal human epidermal melanocyte cells. Several biological assays were performed to evaluate miR-10a-5p influences on cell proliferation, migration and invasion ability in A375 and B16-F10 cells. Gene prediction of miRNA targeting and a dual luciferase assay were applied to assess miR-10a-5p-targeted LIN28B. Western blot assessed the impacts of miR-10a-5p on the protein expression of LIN28B. Western blot analyzed the TCF21 effects on the expression of LIN28B and RT-qPCR assessed the influence of TCF21 on the expression level of miRNA-10a. In addition, Chromatin Immunoprecipitation (ChIP) Assay and JASPAR databases were employed to explore the regulatory relationship between TCF21 and miR-10a-5p. Results We discovered that miR-10a-5p expression was lower in melanoma cells and high expression of miR-10a-5p suppressed the proliferation, migration and invasion abilities of melanoma cells. We also discovered that miR-10a-5p targeted the LIN28B mRNA 3′UTR area and diminished LIN28B protein expression. We found that LIN28B expression was strongly decreased by TCF21 upregulation in the two melanoma cells. The qRT-PCR assay showed that miR-10a-5p expression level was obviously boosted by increased TCF21 expression. The results also demonstrated that TCF21 directly regulated miR-10a-5p at transcript levels. Conclusion TCF21 induced miRNA-10a targeting LIN28B could affect the progression and growth of melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.