Drug resistance in Plasmodium vivax may pose a challenge to malaria elimination. Previous studies have found that P. vivax has a decreased sensitivity to antimalarial drugs in some areas of the Greater Mekong Sub-region. This study aims to investigate the ex vivo drug susceptibilities of P. vivax isolates from the China–Myanmar border and genetic variations of resistance-related genes. A total of 46 P. vivax clinical isolates were assessed for ex vivo susceptibility to seven antimalarial drugs using the schizont maturation assay. The medians of IC50 (half-maximum inhibitory concentrations) for chloroquine, artesunate, and dihydroartemisinin from 46 parasite isolates were 96.48, 1.95, and 1.63 nM, respectively, while the medians of IC50 values for piperaquine, pyronaridine, mefloquine, and quinine from 39 parasite isolates were 19.60, 15.53, 16.38, and 26.04 nM, respectively. Sequence polymorphisms in pvmdr1 (P. vivax multidrug resistance-1), pvmrp1 (P. vivax multidrug resistance protein 1), pvdhfr (P. vivax dihydrofolate reductase), and pvdhps (P. vivax dihydropteroate synthase) were determined by PCR and sequencing. Pvmdr1 had 13 non-synonymous substitutions, of which, T908S and T958M were fixed, G698S (97.8%) and F1076L (93.5%) were highly prevalent, and other substitutions had relatively low prevalences. Pvmrp1 had three non-synonymous substitutions, with Y1393D being fixed, G1419A approaching fixation (97.8%), and V1478I being rare (2.2%). Several pvdhfr and pvdhps mutations were relatively frequent in the studied parasite population. The pvmdr1 G698S substitution was associated with a reduced sensitivity to chloroquine, artesunate, and dihydroartemisinin. This study suggests the possible emergence of P. vivax isolates resistant to certain antimalarial drugs at the China–Myanmar border, which demands continuous surveillance for drug resistance.
Background Loop-mediated isothermal amplification (LAMP) has been widely used to diagnose various infectious diseases. Malaria is a globally distributed infectious disease attributed to parasites in the genus Plasmodium. It is known that persons infected with Plasmodium vivax and P. ovale are prone to clinical relapse of symptomatic blood-stage infections. LAMP has not previously been specifically evaluated for its diagnostic performance in detecting P. ovale in an epidemiological study, and no commercial LAMP or rapid diagnostic test (RDT) kits are available for specifically diagnosing infections with P. ovale. Methods An assay was designed to target a portion of mitochondrial DNA (mtDNA) among Plasmodium spp., the five human Plasmodium species and two other assays were designed to target the nuclear 18S ribosomal DNA gene (18S rDNA) of either P. vivax or P. ovale for differentiating the two species. The sensitivity of the assays was compared to that of nested PCR using defined concentrations of plasmids containing the target sequences and using limiting dilutions prepared from clinical isolates derived from Chinese workers who had become infected in Africa or near the Chinese border with Myanmar. Results The results showed that 102 copies of the mitochondrial target or 102 and 103 copies of 18S rDNA could be detected from Plasmodium spp., P. vivax and P. ovale, respectively. In 279 clinical samples, the malaria Pan mtDNA LAMP test performed well when compared with a nested PCR assay (95% confidence interval [CI] sensitivity 98.48–100%; specificity 90.75–100%). When diagnosing clinical cases of infection with P. vivax, the 18S rDNA assay demonstrated an even great sensitivity (95.85–100%) and specificity (98.1–100%). The same was true for clinical infections with P. ovale (sensitivity 90.76–99.96%; specificity 98.34–100%). Using plasmid-positive controls, the limits of detection of Malaria Pan, 18S rDNA P. vivax and 18S rDNA P. ovale LAMP were 100-, 100- and tenfold lower than those of PCR, respectively. Conclusion The novel LAMP assays can greatly aid the rapid, reliable and highly sensitive diagnosis of infections of Plasmodium spp. transmitted among people, including P. vivax and P. ovale, cases of which are most prone to clinical relapse. Graphic abstract
Background: The spread of drug resistance has seriously impacted the effective treatment of infection with the malaria parasite, Plasmodium falciparum. Continuous monitoring of molecular marker polymorphisms associated with drug resistance in parasites is essential for malaria control and elimination efforts. Our study describes mutations observed in the resistance genes Pfkelch13, Pfcrt, and Pfmdr1 in imported malaria and identifies additional potential drug resistance-associated molecular markers.Methods: Chinese patients infected in Africa with P. falciparum were treated with intravenous (IV) injections of artesunate 240–360 mg for 3–5 days while hospitalized and treated with oral dihydroartemisinin-piperaquine (DHP) for 3 days after hospital discharge. Blood samples were collected and PCR sequencing performed on genes Pfkelch13, Pfcrt, and Pfmdr1 from all isolates.Results: We analyzed a total of 225 patients from Guangxi, China with P. falciparum malaria acquired in Africa between 2016 and 2018. All patients were cured completely after treatment. The F446I mutation of the Pfkelch13 gene was detected for the first time from samples of West African P. falciparum, with a frequency of 1.0%. Five haplotypes of Pfcrt that encode residues 72–76 were found, with the wild-type CVMNK sequence predominating (80.8% of samples), suggesting that the parasites might be chloroquine sensitive. For Pfmdr1, N86Y (13.1%) and Y184F (58.8%) were the most prevalent, suggesting that artemether-lumefantrine may not, in general, be a suitable treatment for the group.Conclusions: For the first time, this study detected the F446I mutation of the Pfkelch13 gene from Africa parasites that lacked clinical evidence of resistance. This study provides the latest data for molecular marker surveillance related to antimalarial drug resistance genes Pfkelch13, Pfcrt, and Pfmdr1 imported from Africa, in Guangxi, China from Chinese migrate workers.Clinical Trial Registration: ChiCTROPC17013106.
Shewanella putrefaciens is as yet reputed to be a rare conditional pathogen. In recent years, some clinical infections caused by Shewanella putrefaciens came into view, and it was possible for the bacteria to be isolated from blood, pus, urine, sputum, and wound secretions, etc. A transferred patient who suffered from intracranial infection after operation of cerebral hemorrhage was admitted in the First Affiliated Hospital of Dalian Medical University. To ascertain the cause, we assessed her blood, cerebrospinal fluid and sputum specimen, and succeeded in isolating one strain of bacteria from her cerebrospinal fluid. To circumvent the potential problem, further detection by Dade Behring Microscan WalkAway 96SI system and drug sensitivity identification plate was performed. Corresponding results indicated that the bacteria were certain pseudomonas with high drug resistance, only sensitive to ticarcillin/clavulanic acid and Imipenem. Eventually by 16S rDNA amplification assay, a new technique to identify pathogens genome, Shewanella putrefaciens infection was confirmed with 99 % coincidence rate. This is the first time in our hospital that Shewanella putrefaciens in the cerebrospinal fluid specimen was detected. When considering the increase of opportunistic infection, it is noteworthy to pay more attention to such situations in clinical diagnoses.
Drug resistance in Plasmodium falciparum compromises the effectiveness of antimalarial therapy. This study aimed to evaluate the extent of drug resistance in parasites obtained from international travelers returning from Ghana to guide the management of malaria cases. Eighty-two clinical parasite isolates were obtained from patients returning from Ghana in 2016–2018, of which 29 were adapted to continuous in vitro culture. Their geometric mean IC50 values to a panel of 11 antimalarial drugs, assessed using the standard SYBR Green-I drug sensitivity assay, were 2.1, 3.8, 1.0, 2.7, 17.2, 4.6, 8.3, 8.3, 19.6, 55.1, and 11,555 nM for artemether, artesunate, dihydroartemisinin, lumefantrine, mefloquine, piperaquine, naphthoquine, pyronaridine, chloroquine, quinine, and pyrimethamine, respectively. Except for chloroquine and pyrimethamine, the IC50 values for other tested drugs were below the resistance threshold. The mean ring-stage survival assay value was 0.8%, with four isolates exceeding 1%. The mean piperaquine survival assay value was 2.1%, all below 10%. Mutations associated with chloroquine resistance (pfcrt K76T and pfmdr1 N86Y) were scarce, consistent with the discontinuation of chloroquine a decade ago. Instead, the pfmdr1 86N-184F-1246D haplotype was predominant, suggesting selection by the extensive use of artemether-lumefantrine. No mutations in the pfk13 propeller domain were detected. The pfdhfr/pfdhps quadruple mutant IRNGK associated with resistance to sulfadoxine-pyrimethamine reached an 82% prevalence. In addition, five isolates had pfgch1 gene amplification but, intriguingly, increased susceptibilities to pyrimethamine. This study showed that parasites originating from Ghana were susceptible to artemisinins and the partner drugs of artemisinin-based combination therapies. Genotyping drug resistance genes identified the signature of selection by artemether-lumefantrine. Parasites showed substantial levels of resistance to the antifolate drugs. Continuous resistance surveillance is necessary to guide timely changes in drug policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.