Understanding the function of individual microRNA (miRNA) species in mice would require the production of hundreds of loss-of-function strains. To accelerate analysis of miRNA biology in mammals, we combined recombinant adeno-associated virus (rAAV) vectors with miRNA `Tough Decoys' (TuDs) to inhibit specific miRNAs. Intravenous injection of rAAV9 expressing anti-miR-122 or anti-let-7 TuD depleted the corresponding miRNA and increased its mRNA targets. rAAV producing anti-miR-122—but not anti-let-7—TuD reduced serum cholesterol by >30% for 25 weeks in wild-type mice. High throughput sequencing of liver miRNAs from the treated mice confirmed that the targeted miRNAs were depleted and revealed that TuD RNAs induce miRNA tailing and trimming in vivo. rAAV-mediated miRNA inhibition thus provides a simple way to study miRNA function in adult mammals and a potential therapy for dyslipidemia and other diseases caused by miRNA deregulation.
Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network.
Elimination of specific surface-exposed single tyrosine (Y) residues substantially improves hepatic gene transfer with adeno-associated virus type 2 (AAV2) vectors. Here, combinations of mutations in the seven potentially relevant Y residues were evaluated for further augmentation of transduction efficiency. These mutant capsids packaged viral genomes to similar titers and retained infectivity. A triple-mutant (Y444+500+730F) vector consistently had the highest level of in vivo gene transfer to murine hepatocytes, approximately threefold more efficient than the best single-mutants, and ~30-80-fold higher compared with the wild-type (WT) AAV2 capsids. Improvement of gene transfer was similar for both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors, indicating that these effects are independent of viral second-strand DNA synthesis. Furthermore, Y730F and triple-mutant vectors provided a long-term therapeutic and tolerogenic expression of human factor IX (hF.IX) in hemophilia B (HB) mice after administration of a vector dose that only results in subtherapeutic and transient expression with WT AAV2 encapsidated vectors. In summary, introduction of multiple tyrosine-mutations into the AAV2 capsid results in vectors that yield at least 30-fold improvement of transgene expression, thereby lowering the required therapeutic dose and potentially vector-related immunogenicity. Such vectors should be attractive for treatment of hemophilia and other genetic diseases.
Empty virions are inadvertent by-products of recombinant adeno-associated virus (rAAV) packaging process, resulting in vector lots with mixtures of full and empty virions at variable ratios. Impact of empty virions on the efficiency and side-effects of rAAV transduction has not been well characterized. Here, we generated partially and completely empty AAV8 virions, fully packaged rAAV8 lots as well as mixtures of empty and fully packaged virions with variable ratios of empty virions (REVs). The aforementioned dosing formulations of rAAV8 expressing either cellular (EGFP or nuclear-targeted (n) LacZ) or secreted (human α1-antitrypsin, hA1AT) reporter genes were intravenously injected into two different mouse strains, followed by analyses of transgene expressions and serum alanine aminotransferase (ALT) levels at different time points. We found that addition of empty particles to the fixed doses of rAAV8 preparations repressed liver transduction up to 64% (serum hA1AT) and 44% (nLacZ) in C57BL/6 mice, respectively. The similar trend in inhibiting EGFP expression together with concurrent elevations of serum ATL levels were observed in the BALB/c mice, indicating that empty particles may also exacerbate side-effects of rAAV8EGFP transduction. Our results suggest that removal of empty particles from rAAV preparations may improve efficacy and safety of AAV in clinical applications.
Short hairpin (sh)RNAs delivered by recombinant adeno-associated viruses (rAAVs) are valuable tools to study gene function in vivo and a promising gene therapy platform. Our data show that incorporation of shRNA transgenes into rAAV constructs reduces vector yield and produces a population of truncated and defective genomes. We demonstrate that sequences with hairpins or hairpin-like structures drive the generation of truncated AAV genomes through a polymerase redirection mechanism during viral genome replication. Our findings reveal the importance of genomic secondary structure when optimizing viral vector designs. We also discovered that shDNAs could be adapted to act as surrogate mutant inverted terminal repeats (mTRs), sequences that were previously thought to be required for functional self-complementary AAV vectors. The use of shDNAs as artificial mTRs opens the door to engineering a new generation of AAV vectors with improved potency, genetic stability, and safety for both preclinical studies and human gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.