Modifications of short RNAs at specific sites can be achieved commercially by solid-phase chemical synthesis method. However, labelling long RNAs is still challenging for the routine methods. Positionselective Labelling of RNA (PLOR) is a hybrid phase transcription method that allows to label RNAs at desired sites with great flexibility and decent efficiency. In principle, PLOR is a promising method for synthesis of long modified RNAs that are unable to be generated by solid-phase chemical synthesis and other methods. However, as a recently developed method, PLOR has been only applied to label a 71nt and a 104nt RNA, and the limited sequence applications of PLOR may hinder its potential usages. To extend PLOR to more RNAs, we tested the PLOR performances for various RNA sequences. Considering that the controlled transcriptional pauses at the initiation stage in PLOR may lead to different preferences on RNA sequences from in vitro transcription method, we here focused on identifying the effects of the 5ʹ-end and initiated lengths of RNA on PLOR. In addition, our work demonstrated that PLOR efficiencies also varied with linker sizes of DNA templates. This work can facilitate PLOR to be the choice of synthesizing long modified RNAs for more users in the near future.
In our previous study, we have isolated Lactoplantibacillus plantarum L 3 (GenBank accession No. MT781360) which can secret bacteriocin L3 with broad-spectrum antibacterial activities. This work aimed to illustrate the antibacterial mechanism of bacteriocin L3 and predict the functionalities of the L. plantarum L 3 strain through whole genome analysis. Preliminary exploration of the bacteriostatic mechanism showed that bacteriocin L3 destroyed the cell membrane integrity and led to the extravasation of the cell contents, leading to cell death. The sequencing results showed that the genome of Lactobacillus plantarum L 3 was 3 187 020 bp in size, with a GC content of 44.57%. Overall, 3 024 encoding genes were annotated, with a sequence length of 2 679 162 bp, accounting for 84.06% of the total genome length. The strain has strong reproductive and metabolic abilities and high safety. The bacteriocin gene cluster analysis showed that the bacteriocins L3 belonged to the class IIb bacteriocins. This work might provide a theoretical basis for the application of this strain in the food industry, especially its potential use in dairy products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.