A 3-year field trial of sugarcane, comprising 11 treatment combinations of different organic manures with and without Gluconacetobacter diazotrophicus (Gd), NPK and an absolute control, on an inceptisol was conducted to assess the effect of these treatments on sugarcane total and economic yield, the benefit:cost ratio, nutrient balance and soil quality in a sugarcane plant-ratoon system. The highest cane yield (78.6 t ha À1 ) was recorded in the plant crop given vermicompost + Gd, whereas ratoon yields (first and second) were highest (80.8 and 74.9 t/ha À1 , respectively) with sulphitation press mud cake (SPMC) + Gd. In both plant and ratoon crops, a number of different organic manures produced the highest cane yield that was also statistically similar to those obtained with using the recommended NPK levels (76.1, 78.2 and 71.7 t/ha for plant crop and subsequent two ratoons, respectively). The highest benefit:cost (B:C) ratio in the plant and two ratoon crops (1.28, 2.36, 2.03 respectively) were obtained with the addition of SPMC + Gd. The nutrient balance for NPK in the soil was highest in the SPMC + Gd treatment. The highest increase in organic C (94%) and total N (87%), in comparison to the initial level, and soil microbial biomass C (113%) and soil microbial biomass N (229%), in comparison to the control treatment, was recorded with the addition of SPMC + Gd. The maximum decrease in soil bulk density (BD) (12%) with an increase in soil aggregate (17%) and water infiltration rate (35%) was obtained with the addition of SPMC. Overall, the sugarcane crop responded well to different organic manures in a multiple ratooning system with a better economic output and improved soil quality. Strategic planning in terms of an integrated application of these manures with inorganic chemicals will not only sustain our soils but will also be beneficial for our farmers in terms of reducing their dependence and expenditure on chemical fertilizers.
Changes in soil organic C (C org ), total N (N t ), available nutrients, soil microbial biomass C (C mic ) and N (N mic ), and mineralizable C and N in the sugarcane (Saccharum officinarum L.) rhizosphere were evaluated under intensive sugarcane cropping systems with intercrops including wheat (Triticum aestivum L.), maize (Zea mays L.), rajmash (Phaseolus vulgaris L.), green gram [Vigna radiata (L.) R. Wilczek var. radiata], cowpea [Vign aunguiculata (L.) Walp.], lentil (Lens culinaris Medik.), mustard (Brassica rapa L.), potato (Solanum tuberosum L.), and sesbania (Sesbania rostrata Bremek. & Oberm.) in subtropical soils of India. Organic C increased significantly when maize (25%), wheat (24%), mustard (19%), potato (17%), and rajmash (13%) were intercropped with sugarcane, while legume intercrops substantially increased N t and available N. Increase in microbial respiration was greater where maize (42%), wheat (37%), or mustard (31%) were intercropped compared with pulse crops. Soil microbial biomass C accounted for 2.7 to 3.3% of C org content and N mic accounted for 2.6 to 3.7% of N t under different intercropping conditions. A higher CO 2 evolution rate and wider C mic /N mic ratios were recorded with cereal and mustard intercrops, whereas higher N mineralization was recorded with pulse intercrops. Results indicate that intercropping with pulse crops and incorporation of their labile C substrate improved N mineralization. The build up of the C pool and C mic in the case of cereals, mustard, and potato intercropping should promote longterm stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.